A multigrid optimization algorithm for the numerical solution of quasilinear variational inequalities involving the p-Laplacian

Abstract: In this paper we propose a multigrid optimization algorithm (MG/OPT) for the numerical solution of a class of quasilinear variational inequalities of the second kind. This approach is enabled by the fact that the solution of the variational inequality is given by the minimizer of a nonsmooth energy functional, involving the pp-Laplace operator. We propose a Huber regularization of the functional and a finite element discretization for the problem. Further, we analyze the regularity of the discretized energy functional, and we are able to prove that its Jacobian is slantly differentiable. This regularity property is useful to analyze the convergence of the MG/OPT algorithm. In fact, we demonstrate that the algorithm is globally convergent by using a mean value theorem for semismooth functions. Finally, we apply the MG/OPT algorithm to the numerical simulation of the viscoplastic flow of Bingham, Casson and Herschel–Bulkley fluids in a pipe. Several experiments are carried out to show the efficiency of the proposed algorithm when solving this kind of fluid mechanics problems.

Leer

First Order Methods for High Resolution Image Denoising

Abstract: In this paper we are interested in comparing the performance of some of the most relevant first order non-smooth optimization methods applied to the Rudin, Osher and Fatemi (ROF) Image Denoising Model and a Primal-Dual Chambolle-Pock Image Denoising Model. Because of the properties of the resulting numerical schemes it is possible to handle these computations pixelwise, allowing implementations based on parallel paradigms which are helpful in the context of high resolution imaging.

Leer

Preconditioned Proximal Point Methods and Notions of Partial Subregularity

Abstract: Based on the needs of convergence proofs of preconditioned proximal point methods, we introduce notions of partial strong submonotonicity and partial (metric) subregularity of set-valued maps. We study relationships between these two concepts, neither of which is generally weaker or stronger than the other one. For our algorithmic purposes, the novel submonotonicity turns out to be easier to employ than more conventional error bounds obtained from subregularity. Using strong submonotonicity, we demonstrate the linear convergence of the Primal-Dual Proximal splitting method to some strictly complementary solutions of example problems from image processing and data science. This is without the conventional assumption that all the objective functions of the involved saddle point problem are strongly convex.

Leer

Integro-differential systems of mixed type involving higher order fractional Laplacian, Integral Transforms and Special Functions

Abstract: In this paper, we deal with a new class of non-local operators that we term integro-differential systems of mixed type. We study the behaviour of solutions of this system when the diffusion term involves higher order fractional powers of the Laplacian. Moreover, we prove that the solution of the system decays faster than a power with an exponent given by the smallest index of the fractional power of the Laplacian.

Leer

Infimal Convolution of Data Discrepancies for Mixed Noise Removal

Abstract: We consider the problem of image denoising in the presence of noise whose statistical properties are a combination of two different distributions. We focus on noise distributions frequently considered in applications, such as salt & pepper and Gaussian, and Gaussian and Poisson noise mixtures. We derive a variational image denoising model that features a total variation regularization term and a data discrepancy encoding the mixed noise as an infimal convolution of discrepancy terms of the single-noise distributions. We give a statistical derivation of this model by joint maximum a posteriori (MAP) estimation. Classical single-noise models are recovered asymptotically as the weighting parameters go to infinity. The numerical solution of the model is computed using second order Newton-type methods. Numerical results show the decomposition of the noise into its constituting components. The paper is furnished with several numerical experiments, and comparisons with other methods dealing with the mixed noise case are shown.

Leer

Learning optimal spatially-dependent regularization parameters in total variation image denoising

Abstract: We consider a bilevel optimization approach in function space for the choice of spatially dependent regularization parameters in TV image denoising models. First- and second-order optimality conditions for the bilevel problem are studied when the spatially-dependent parameter belongs to the Sobolev space ${{H}^{1}}\left(\Omega \right)$ . A combined Schwarz domain decomposition-semismooth Newton method is proposed for the solution of the full optimality system and local superlinear convergence of the semismooth Newton method is verified. Exhaustive numerical computations are finally carried out to show the suitability of the approach.

Leer

The jump set under geometric regularisation. Part 2: Higher-order approaches

Abstract:

Leer

Bilevel approaches for learning of variational imaging models

Abstract: We review some recent learning approaches in variational imaging, based on bilevel optimisation, and emphasize the importance of their treatment in function space. The paper covers both analytical and numerical techniques. Analytically, we include results on the existence and structure of minimisers, as well as optimality conditions for their characterisation. Based on this information, Newton type methods are studied for the solution of the problems at hand, combining them with sampling techniques in case of large databases. The computational verification of the developed techniques is extensively documented, covering instances with different type of regularisers, several noise models, spatially dependent weights and large image databases.

Leer

Existence and uniqueness for parabolic problems with Caputo time derivative

Abstract: In this paper we are interested in the well-posedness of fully nonlinear Cauchy problems in which the time derivative is of Caputo type. We address this question in the framework of viscositysolutions, obtain-ing the existence via Perron’s method, and comparison for bounded sub and supersolutions by a suitable regularization through inf and sup convolution in time. As an application, we prove the steady-state large time behavior in the case of proper nonlinearities and provide a rate of convergence by using the Mittag–Leffler operator.

Leer

Second-order orthant-based methods with enriched Hessian information for sparse $\ell_1$-optimization

Abstract: We present a second order algorithm, based on orthantwise directions, for solving optimization problems involving the sparsity enhancing $\ell_1$-norm. The main idea of our method consists in modifying the descent orthantwise directions by using second order information both of the regular term and (in weak sense) of the $\ell_1$-norm. The weak second order information behind the $\ell_1$-term is incorporated via a partial Huber regularization. One of the main features of our algorithm consists in a faster identification of the active set. We also prove that a reduced version of our method is equivalent to a semismooth Newton algorithm applied to the optimality condition, under a specific choice of the algorithm parameters. We present several computational experiments to show the efficiency of our approach compared to other state-of-the-art algorithms.

Leer

A preconditioned descent algorithm for variational inequalities of the second kind involving the p-Laplacian operator

Abstract: This paper is concerned with the numerical solution of a class of variational inequalities of the second kind, involving the p-Laplacian operator. This kind of problems arise, for instance, in the mathematical modelling of non-Newtonian fluids. We study these problems by using a regularization approach, based on a Huber smoothing process. Well posedness of the regularized problems is proved, and convergence of the regularized solutions to the solution of the original problem is verified. We propose a preconditioned descent method for the numerical solution of these problems and analyze the convergence of this method in function spaces. The existence of admissible descent directions is established by variational methods and admissible steps are obtained by a backtracking algorithm which approximates the objective functional by polynomial models. Finally, several numerical experiments are carried out to show the efficiency of the methodology here introduced.

Leer