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Abstract

We address the problem of optimal scale-dependent parameter learning in total varia-
tion image denoising. Such problems are formulated as bilevel optimization instances
with total variation denoising problems as lower-level constraints. For the bilevel prob-
lem, we can derive M-stationarity conditions after characterizing the corresponding
Mordukhovich generalized normal cone and verifying suitable constraint qualification
conditions. We also derive B-stationarity conditions, after investigating the Lipschitz
continuity and directional differentiability of the lower-level solution operator. A char-
acterization of the Bouligand subdifferential of the solution mapping, by means of a
properly defined linear system, is provided as well. Based on this characterization, we
propose a two-phase non-smooth trust-region algorithm for the numerical solution of
the bilevel problem and test it computationally for two particular experimental settings.
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Chapter 1

Introduction

Computational imaging methods aim to estimate a good-quality image from noisy,
incomplete, or indirect measurements. For example, image denoising and image de-
convolution try to recover a clean version from a noisy and blurry input image. Image
inpainting tries to complete missing information from an image. The damage to an
image can be caused by different sources, such as poor lighting conditions, problems
in the transmission media, floating-point rounding errors in the analog-to-digital (AD)
conversion, or image compression.

Image reconstruction applications are often ill-posed; furthermore, said problems
are a type of inverse problem [29]. Therefore, using regularization techniques for in-
verse problems [79], existing reconstruction methods make different assumptions about
the characteristics of the recovered image. Consequently, specific regularizers apply a
priori information based on observed properties of the desired output image, such as a
tendency to have smooth regions with sharp edges or a form of sparsity on the image
gradients, i.e., total variation, see [71].

A critical factor in the quality of the reconstruction obtained by image processing
methods is the choice of the parameters in the imaging model. Indeed, a poor choice
of parameters can lead to a very bad reconstruction. Furthermore, several questions
are of interest in this regard, e.g., what makes a set of “good” parameters? How many
parameters should be learned? How can we learn these “good” parameters?

While we can apply a model-free approach such as a grid search or random search
for finding these optimal parameters, these strategies do not scale with a large number
of parameters because of the exponential growth of the grid with the size of the param-
eters, as reported in [7]. Alternatively, using a model-based approach where we define a
loss function that describes a “good” parameter makes an assumption of the parameter
landscape, allows for the use of optimization techniques to characterize optimal pa-
rameters and derive numerical methods for finding them. Moreover, the main benefit
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of these optimization-based strategies is that they allow the use of a large number of
parameters; indeed, it is the case for most imaging applications.

Data-driven approaches use suitable training data to define a loss function based on
an image quality metric, i.e., it measures the quality of the reconstruction with respect
to a ground-truth image. This measure is further used to determine the correct model
parameters and the structure of the optimal regularizer. Some applications that use
this methodology include the work by Tappen et al. [70, 78] where the authors learn
the parameters of different Markov random field models. In [60] a learning approach
was proposed for learning sparse analysis priors using a smooth version of a l1 model.
Furthermore, applications in the context of sparse coding and dictionary learning are
described in [52, 58, 88] and for learning parameters in support vector machines in [46].

Furthermore, these data-driven methods often outperform traditional methods and
are gaining popularity partly because of the increased availability of training data and
computational resources [36].

Bilevel learning fits into the model-based and data-driven parameter search strat-
egy. Moreover, bilevel programming addresses the problem of optimal parameter search
systematically. Indeed, this methodology allows for a precise characterization of the
learned parameters and insights into its structure. Bilevel learning methods are so
named because they involve two levels of optimization: an upper-level loss function
dependent on training data that defines a goal or measure of goodness for the learn-
able parameters and a lower-level cost function that uses the learnable parameters.
By considering a training set (fk, u

true
k ) for k = 1, . . . , p containing pairs of damaged

and ground-truth information respectively; J as the upper-level loss function and E ,
the lower level cost function, the bilevel learning paradigm formulates the following
optimization problem for finding the optimal parameter θ

min
θ

P∑
k=1

J(uk, u
true
k ) (1.1a)

s.t. uk ∈ argmin
u∈Rn

E(u; θ, fk). (1.1b)

Lately, bilevel optimization techniques have had a strong presence in the machine
learning community. Particularly in hyperparameter optimization [2], neural architec-
ture search [87], feature learning [30], and sparsity-enforcing regression [62] to name a
few. Furthermore, bilevel optimization has been used in the context of neural network
training, e.g., in [89], the authors propose a new family of recurrent neural networks
with good training stability in the presence of vanishing gradients that is formulated
using a stochastic bilevel optimization problem.

When considering a bilevel learning problem with lower-level cost as a variational
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imaging model, the seminal work in [25] analyzes a bilevel learning strategy for finding
parameters to the corresponding noise model. Likewise, the authors in [48] address the
problem of parameter selection using finite-dimensional space for imaging models using
Tikhonov and l1 regularizer. Mixed noise models were studied in [12]. The authors
in [11] propose a dynamic sampling technique when dealing with large-size training sets.
Furthermore, extensions of the parameter properties with a scale-dependent structure
were addressed in [9, 81]. Now, applications for dealing with image segmentation
models were found in [64], learning the sample pattern for magnetic resonance imaging
(MRI) [75], and non-local models in [19].

This work will focus on bilevel learning problems where the lower-level problem is
an image denoising model involving the total variation regularizer. Moreover, we will
consider a bilevel parameter learning problem using a finite-dimensional space. Mainly,
we are interested in obtaining optimality conditions and devising a numerical algorithm
for finding solutions.

The non-differentiability of the total variation regularizer presents challenges when
used within the lower level of a bilevel optimization problem. The main challenge of
this problem is to characterize optimality conditions for the bilevel problem since it fails
to satisfy classical constraint qualification conditions, see section 3.4. Therefore, the
requirements for the existence of Lagrange multipliers are not met. This phenomenon
leads to alternative notions of stationarity, as detailed in section 2.6 and the references
therein. Indeed, we may find stationarity conditions based on different approaches.
In particular, assuming Bouligand calculus, we may characterize a Bouligand (B-)
stationarity system; Clarke’s nonsmooth analysis leads to a Clarke (C-) stationarity
system, and Mordukhovich generalized differential calculus applied to a generalized
normal cone generates a Mordukhovich (M-) stationarity system that can be proven to
be sharper than C-stationarity.

A traditional approach for dealing with this problem is to replace the non-smooth
term with a smooth approximation. Then, the solution map for the lower-level problem
presents a Gateaux differentiable solution map for which we can derive an optimality
system. Furthermore, using an asymptotic analysis of the smooth optimality system,
it is possible to retrieve a characterization for Clarke (C-) stationary points. Moreover,
we can use the smooth optimality system to solve the problem numerically; indeed,
quasi-Newton [11] and Newton semi-smooth [48] methods have been proposed for this
task.

This thesis aims to characterize sharper stationary points using two different ap-
proaches. First, we will explore a generalized mathematical problem with equilibrium
constraints (GMPEC) reformulation and verify a suitable constraint qualification con-
dition to characterize Mordukhovich (M-) stationary points, keeping it as a purely
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theoretical result. Second, we investigate the differentiability properties of the solution
map to obtain a characterization of Bouligand (B-) stationary points. This result will
allow us to describe the linear elements of the Bouligand subdifferential of the solution
map that will be used for implementing a non-smooth trust region algorithm designed
for Lipschitz-continuous functions [18] to obtain a numerical solution. This algorithm
is numerically easier to solve and takes fewer iterations when compared to a classical
regularized gradient obtained by smoothing the problem. Additionally, we will explore
the performance of different parameter structures such as scalar, scale-dependent, and
patch-dependent parameters; then their generalization capabilities when dealing with
a test set.

The structure of this thesis is as follows. Chapter 2 will set up the notation and
some preliminary results that will be used in later chapters. Next, in Chapter 3 we
will introduce the bilevel learning problem for learning parameters in imaging denois-
ing models. After that, we will split the discussion into two topics: the lower-level
problem’s solution uniqueness, existence, and numerical treatment using a matrix-free
implementation of the gradient operator and a review of the smooth version of the
bilevel problem and its optimality conditions. We finalize this chapter by showing the
challenges of this problem to satisfy classical constraint qualification conditions.

Then, this work will distinguish two different bilevel learning problem settings: the
problem for learning parameters appearing in the data fidelity term in Chapter 4 and
parameters appearing in the regularization term in Chapter 5. In both chapters, we
will start by reformulating the bilevel problem as a generalized MPEC, justify suitable
constraint qualification conditions and characterize M-stationary points. Furthermore,
we will study the properties of the solution operator for the lower-level problem regard-
ing its Bouligand differentiability, which will help us characterize B-stationary points.
Finally, with the use of a proper characterization of the linear elements of the Bouli-
gand subdifferential of the solution map, we will design and implement a non-smooth
trust-region algorithm to learn optimal patch-based parameters using the CelebA faces
dataset [50].
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Chapter 2

Preliminaries

We denote the set of all linear mappings between Rn and Rm as L(Rn,Rm). The
scalar product of two vectors v, w ∈ Rn will be noted as ⟨v, w⟩ and its corresponding
Euclidean norm as ∥ · ∥.

2.1 Orthogonal Complements

Let V ⊆ Rn be a finite-dimensional space endowed with an inner product ⟨·, ·⟩ and its
corresponding Euclidean norm ∥ · ∥.

Definition 2.1. Let S be a non-empty subset of the space V . We define S⊥ to be
the set of all vectors in V that are orthogonal to every vector in S; that is,

S⊥ = {x ∈ V ⟨x, y⟩ = 0, ∀y ∈ S}.

Moreover, the set S⊥ is called the orthogonal complement of S.

Furthermore, we will denote the set of all linear combinations of the elements on
S as the span(S). Using the definition, it can be seen that S⊥ is a subspace of V and
V ⊥ = {0} for any space V .

In the following theorems, we will present some important properties of the orthog-
onal complement; for a more rigorous review, we refer the reader to [31].

Theorem 2.1. Let W be a subspace of V . Then (W⊥)⊥ = W .

Theorem 2.2. [31, pg. 355] Let W be a subspace of the space V , and let y ∈ V . Then
there exist unique vectors u ∈ W and z ∈ W⊥ such that y = u + z. Thanks to this
property, it holds

dim(V ) = dim(W ) + dim(W⊥).
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Theorem 2.3. [31, pg. 355] Let W1 and W2 be subspaces of a finite-dimensional inner
product space. Then (W1 +W2)

⊥ = W⊥
1 ∩W⊥

2 and (W1 ∩W2)
⊥ = W⊥

1 +W⊥
2 .

Now, for a given matrix A ∈ Rm×n we define the subspace generated by its columns
as range(A)

range(A) := {b ∈ Rm : Ax = b for some x ∈ Rn}.

Likewise, the space generated by its rows is range(A⊤). Moreover, the set of vectors
that satisfy Ax = 0 will be noted as ker(A) and is defined as the nullspace of A

ker(A) := {x ∈ Rn : Ax = 0}.

Theorem 2.4. [77, pg. 162] Let A ∈ Rm×n. Then, the nullspace of a matrix is the
orthogonal complement of its row space, i.e., ker(A) = range(A⊤)⊥ and ker(A⊤) =

range(A)⊥.

2.2 Convex Analysis

A function f : Rn → R is convex if it satisfies the following property

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y), ∀x, y ∈ Rn, t ∈ [0, 1].

It is strictly convex if the above inequality is strict whenever x ̸= y and t ∈ (0, 1).
Furthermore a function is lower semi-continuous if, for all x ∈ Rn, if xn → x, then

f(x) ≤ lim inf
n→∞

f(xn).

Moreover, we will say that f is proper if f(x) <∞ for at least one x ∈ Rn.

Now, given a convex, lower semi-continuous function f : Rn → R, we recall that its
subgradient at a point x is defined as the set

∂f(x) := {p ∈ Rn : f(y) ≥ f(x) + ⟨p, y − x⟩, ∀y ∈ Rn}.

It is worth noting that in the case f is differentiable, the subgradient is a singleton con-
taining the gradient of the function, i.e., ∂f(x) = {∇f(x)}. The function is strongly
convex if in addition, for x, y ∈ Rn and p ∈ ∂f(x), we have

f(y) ≥ f(x) + ⟨p, y − x⟩+ c

2
∥y − x∥2.

Definition 2.2. Let C ⊆ Rn be an arbitrary cone. Then C∗ := {v ∈ Rn : ⟨v, d⟩ ≥
0, ∀d ∈ C} denotes de dual cone of C.
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2.2.1 Fenchel Conjugate

For any function f : Rn → R one can associate its Fenchel Conjugate as follows

f ∗(y) = sup
x∈Rn

⟨y, x⟩ − f(x), (2.1)

which can be seen as the supremum of linear continuous functions, and therefore,
convex and lower semi-continuous. Furthermore, we define the biconjugate as f ∗∗

as the conjugate of the conjugate of f . This function is the largest convex, lower
semi-continuous function below f ; in particular, when f is already convex and lower
semi-continuous, we have f ∗∗ = f .

Furthermore, using the definition (2.1) and assuming f is a convex function, we see
that x realizes the supremum in (2.1) if and only if y ∈ ∂f(x) and we have f(x)+f ∗(y) =

⟨y, x⟩. Also, it follows that x ∈ ∂f ∗(y), from where we deduce the Legendre-Fenchel
identity

y ∈ ∂f(x)⇔ x ∈ ∂f ∗(y)⇔ f(x) + f ∗(y) = ⟨y, x⟩.

2.2.2 Proximal Map

If f : Rn → R is convex, proper and lower semi-continuous, then, for any x, there is a
unique minimizer y∗ to the strongly convex problem

min
y ∈ Rn

g(y) := f(y) +
1

2τ
∥y − x∥2.

Moreover, if g is strongly convex, also satisfies

f(y) +
1

2τ
∥y − x∥2 ≥ f(y∗) +

1

2τ
∥y∗ − x∥+ 1

2τ
∥y − y∗∥2,∀y ∈ Rn

Finally, we define the proximal map of the function f at x as y∗ := proxτf (x).

2.2.3 Fenchel Duality

An essential notion in convex programming is indeed convex duality. This notion
transforms convex problems into other problems which sometimes have a nicer structure
that can be exploited. Let us consider the following optimization problem

min
x
f(x) + g(Kx),

where f : Rn ⊇ Ω2 → R and g : Rn ⊇ Ω1 → R are convex, lower semi-continuous
functions and K : Ω1 → Ω2 is a bounded linear operator. Then, since in this case, we
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have f = f ∗∗, the following equality holds true

min
x∈Ω1

f(x) + g(Kx) = min
x∈Ω1

sup
y∈Ω2

⟨y,Kx⟩ − g∗(y) + f(x).

Assuming that there exists a point x such that Kx is in the relative interior of the
domain of g and x in the relative interior of the domain of f [28, Chapter 3, Theorem.
4.2], we are able to formulate its Fenchel-Rockafellar dual problem [67, Section 31]
as follows

min
x∈Ω2

f(x) + g(Kx) = min
x∈Ω2

sup
y∈Ω1

⟨y,Kx⟩ − g∗(y) + f(x),

= max
y∈Ω1

inf
x∈Ω2

⟨y,Kx⟩ − g∗(y) + f(x),

= max
y∈Ω1

−g∗(y)− f ∗(−K∗y).

Under the assumptions described above, we know it has at least a solution y∗. Naming
x∗ as the solution for the primal problem, then the tuple (x∗, y∗) is a saddle-point for
the primal-dual formulation, i.e., for any (x, y) ∈ Ω1 × Ω2 we have

L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗),

where L(x, y) := ⟨y,Kx⟩ − g∗(y) + f(x) denotes the Lagrangian. This implies that
we can characterize extremality conditions for the primal-dual problem as

g∗(y)− g∗(y∗) ≥ ⟨K∗x∗, y − y∗⟩,
f(x)− f(x∗) ≥ ⟨−Ky∗, x− x∗⟩,

and these conditions can be equivalently written as the following inclusions

Kx∗ ∈ ∂g∗(y∗),
−K∗y∗ ∈ ∂f(x∗).

2.3 Nonsmooth Analysis

A function F : Rn → Rm is Fréchet differentiable at x ∈ Rn if there exists A ∈
L(Rn,Rm) such that

lim
h→0

∥F (x+ h)− F (x)− A(h)∥
∥h∥

= 0,
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and we write F ′(x) = A. We say that F is Fréchet differentiable on Rn if F is Fréchet
differentible at each x ∈ Rn. We often refer to Fréchet differentiable simply as differ-
entiable.

A function F : Rn → Rm is directionally differentiable at x ∈ Rn if the following
limit exists for all d ∈ Rn

F ′(x; d) = lim
t→0

F (x+ td)− F (x)
t

.

Now, considering a more general setting, let us take the function F : Rn → Rm to
be a locally Lipschitz function, i.e., for any x ∈ Rn there exist constants ϵ = ϵ(x) > 0

and L = L(x) > 0 such that

∥F (x1)− F (x2)∥ ≤ L∥x1 − x2∥,∀x1, x2 ∈ B(x, ϵ).

We will denote by DF the set of x ∈ Rn where F is differentiable. The following
theorem shows a property holding for all locally Lipschitz functions regarding their
differentiability

Theorem 2.5 (Rademacher). Let F : Rn → Rm be a locally Lipschitz continuous
function in F . Then, F is differentiable almost everywhere in Rn, i.e., the set Rn\DF

has a null measure.

As a consequence of theorem 2.5, we know that for a locally Lipschitz continuous
function, we can approximate each x ∈ Rn by a sequence {xk} ⊂ DF such that xk → x.
Moreover, we may take a sequence of derivatives at each xk. The set of all such limits
is known as the Bouligand subdifferential at x.

Definition 2.3 (Bouligand Subdifferential). Let F : Rn → Rm locally Lipschitz contin-
uous and x ∈ Rn arbitrary but fixed. Then the set

∂BF (x) := {H ∈ Rm×n : ∃{xk} ⊆ DF , xk → x and F ′(xk)→ H}, (2.2)

is known as the Bouligand subdifferential of F at x.

Definition 2.4 (Clarke Subdifferential). The Clarke subdifferential at x ∈ Rn is defined
as the closure of the convex hull of the Bouligand subdifferential, i.e.,

∂F (x) = cl(conv(∂BF (x)))

Theorem 2.6. Let F : Rn → Rm locally Lipschitz continuous and x ∈ Rn arbitrary
but fixed. Then
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1. ∂BF (x) is non-empty and compact.

2. ∂F (x) is non-empty, convex and compact.

Theorem 2.7. Let F : Rn → Rm locally Lipschitz continuous, then

1. The map x → ∂BF (x) is closed, i.e., for any xk → x, Hk → H ∈ Rm×n with
Hk ∈ ∂BF (xk) we have H ∈ ∂BF (x)

2. The map x→ ∂F (x) is closed.

We say that F : Rn → Rm is Bouligand (B-) differentiable at x ∈ Rn if F is
directionally differentiable and locally Lipschitz continuous. Moreover, we say that F
is Bouligand differentiable in Rn if it is in every x ∈ Rn.

Lemma 2.1. Let F : Rn → Rm be Bouligand differentiable, then

lim
dk→0

F (x+ dk)− F (x)− F ′(x; dk)

∥dk∥
= 0.

Moreover, when dealing with a composition of Bouligand differentiable functions,
we have a chain rule

Theorem 2.8. Let Ω1 ⊂ Rn, Ω2 ⊂ Rp, F : Ω1 → Rm and G : Ω2 → Rn two B-
differentiable functions at the point x0 ∈ Ω2 and f(x0) ∈ Ω1 respectively. Then the
composite function F ◦G is B-differentiable at x0 and

(F ◦G)′(x0; d) = F ′(G(x0);G
′(x0; d)).

Furthermore, we know B-differentiable functions satisfy the following properties:

1. (αF + βG)′(x0; d) = αF ′(x0; d) + βG′(x0; d).

2. (FG)′(x0; d) = F (x0)G
′(x0; d) +G(x0)F

′(x0; d).

3. If G(x0) ̸= 0, then(
F

G

)′

(x0; d) =
1

G(x0)
2 (G(x0)F

′(x0; d)− F (x0)G′(x0; d)).

Regarding the stationarity conditions for optimization problems involving a B-
differentiable scalar-valued function f : Rn → R

min
x ∈ Rn

f(x), (2.3)
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the following stationarity condition can be used to characterize a locally optimal solu-
tion.

Definition 2.5 (B-stationarity). Let x∗ ∈ Rn be a local optimal solution of (2.3), then
it satisfies the following necessary optimality condition

f ′(x∗;x− x∗) ≥ 0, ∀x ∈ Rn. (2.4)

A point x∗ satisfying (2.4) is called Bouligand (B-) stationary.

2.4 Variational Geometry

Let us consider a set C ⊂ Rn, representing a set of constraints related to an optimiza-
tion problem. The boundary of C in this scenario plays a crucial role in characterizing
a solution. However, in a general setting, C may have a boundary with many curvi-
linear facets, edges, and corners. This lack of smoothness prevents the use of standard
methods of geometric analysis.

In this section, we are interested in associating with each point of a set C cer-
tain cones of tangent and normal vectors, which generalize the tangent and normal
subspaces in differential geometry. For a more rigorous review, we refer the reader
to [68].

A first fundamental cone is the so-called tangent cone and is defined using a limiting
process on the difference quotients as follows

Definition 2.6 (Tangent cone). A vector d is said to be tangent to C at a point x
if there are a feasible direction {xk} approaching x and a sequence of positive scalars
{tk} with tk → 0 such that

lim
k→∞

xk − x
tk

= d.

The set of all tangent vectors to C at x is called tangent cone and is noted by TC(x).

In the literature, there exist several equivalent formulations of this cone. In partic-
ular, for this work, we will make use of one based on the distance function.

Definition 2.7. The distance of a vector x to a set C is defined as

dist(x,C) := inf
y∈C
∥x− y∥

Using this function, [45, Theorem 4.1.12] showed that a vector v is tangent to C
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at x if the following limit holds true

lim
t→0

dist(x+ tv, C)

t
= 0. (2.5)

The notion of a normal vector can be seen as a counterpart of tangency, and a first
generalization for the normal cone is defined as follows

Definition 2.8 (Fréchet normal cone). Let C be non-empty and closed, and x∗ ∈ C.
The Fréchet normal cone is

NF
C (x

∗) := {w : ⟨w, x− x∗⟩ ≤ o(∥x− x∗∥), ∀x ∈ C}.

Remark 2.1. Alternatively, the Fréchet normal cone can be written as the polar cone
to TC(x∗), i.e., NF

C (x
∗) = [TC(x

∗)]◦.

One difficulty with the Fréchet normal cone is that it is not outer semicontinuous;
see [68, Def. 5.4]. Indeed, we obtain the less "irregular" Mordukhovich normal cone
by taking the following limiting process

Definition 2.9 (Mordukhovich normal cone). Let C be non-empty and closed, and
x∗ ∈ C be given. The limiting/Mordukhovich normal cone to C at x∗ is

NM
C (x∗) :=

{
lim
k→∞

wk : ∃{xk} : lim
k→∞

xk = x∗, wk ∈ NF
C (xk)

}
.

Remark 2.2. In the case of C being convex, the Fréchet and Mordukhovich normal
cones are equivalent to the classical normal cone from convex analysis.

Proposition 2.1 (Limits of normal vectors). Let {xk} ⊂ C be a sequence such that
xk → x∗, vk ∈ NM

C (xk) and vk → v, then v ∈ NM
C (x∗). In other words, the set-valued

mapping NM
C : x→ NM

C (x) is outer semicontinuous at x∗ relative to C.

2.5 Optimality Conditions for Standard Nonlinear Pro-
grams

Let us start this discussion by laying out some basic concepts for optimality in classical
nonlinear programs, for a more in-depth review we refer the reader to [8, 55]. Let us
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consider the following constrained optimization problem

min
x ∈ Rn

f(x) (2.6a)

s.t. hi(x) = 0, i ∈ E , (2.6b)

gi(x) ≤ 0, i ∈ I (2.6c)

where f : Rn → R, hi : Rn → R, gi : Rn → R are continuously differentiable functions
on a subset of Rn and I and E are two finite sets of indices. We define the feasible
set Ω to be the set of all points x satisfying the constraints; that is

Ω := {x ∈ Rn : hi(x) = 0, i ∈ E , gi(x) ≤ 0, i ∈ I}.

Given a feasible point x, we call {xk} a feasible sequence approaching x if xk ∈ Ω

for all k sufficiently large and xk → x. Now, we characterize a local solution of (2.6)
as a point x at which all feasible sequences approaching x have the property that
f(xk) ≥ f(x) for all k sufficiently large. Indeed, it is of particular importance to
characterize the directions in which any step from a feasible point x remains feasible.
Such directions are characterized through the tangent cone, see definition 2.6.

Definition 2.10. The active set A(x) at any feasible x consists of the equality
constraint indices together with the indices of the inequality constraints i for which
gi(x) = 0; that is,

A(x) = E ∪ {i ∈ I : gi(x) = 0}.

Likewise, we define the linearized feasible direction set as follows

F (x) :=

d :

⟨d,∇hi(x)⟩ = 0,∀i ∈ E ,

⟨d,∇gi(x)⟩ ≥ 0,∀i ∈ A(x) ∪ I.


Constraint qualifications are conditions under which the linearized feasible set F (x)

is equal, to the tangent cone TΩ(x). Indeed, these sets are not necessarily equal, given
that the set F is built by linearizing an algebraic description of Ω at x, and the tangent
cone relies completely on the geometry of the constraint set Ω. The most widely used
constraint qualification conditions are the following ones

Definition 2.11. Let x∗ ∈ Ω be a feasible point for problem (2.6). Then

1. the Abadie constraint qualification (ACQ) holds at x∗ if the linearized feasible
set coincides with the tangent cone, e.g., F (x∗) = TΩ(x

∗).

2. the Guinard constraint qualification (GCQ) holds at x∗ if the dual of both the
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linearized feasible set and the tangent cones coincide, e.g., F (x∗)∗ = TΩ(x
∗)∗.

Moreover, since the constraint functions in (2.6) are differentiable, these constraint
qualification conditions can be satisfied by verifying the following conditions.

Definition 2.12 (LICQ). If the gradient vectors ∇hi(x∗) and all active constraint
gradients ∇gi(x∗), i ∈ A(x∗) are linearly independent, then the Linear Independence
Constraint Qualification (LICQ) holds.

Definition 2.13 (MFCQ). The Mangasarian-Fromovitz Constraint Qualification (MFCQ)
holds at a point x∗ if the gradient vectors ∇hi(x∗) for i ∈ E are linearly independent
and there exist a vector d ∈ Rn such that ⟨∇gi(x∗), d⟩ < 0 for all i ∈ A(x∗) and
⟨∇hi(x∗), d⟩ = 0 for all i ∈ E .

Furthermore, the following implications can be proved

LICQ⇒MFCQ⇒ ACQ⇒ GCQ

Let x∗ ∈ Rn be a local solution for (2.6), and assuming that any of the constraint
qualification conditions mentioned above holds. Then, there exist Lagrange multiplier
vectors (λ∗, µ∗), with components λ∗i for i ∈ E and µ∗

i for i ∈ I such that the following
KKT-condition [44, 47] holds for this constrained optimization problem at (x∗, λ∗, µ∗)

∇f(x∗) +
∑
i∈E

λ∗i∇hi(x) +
∑
i∈I

µ∗
i∇gi(x) = 0, (2.7a)

hi(x
∗) = 0, ∀i ∈ E , (2.7b)

gi(x
∗) ≥ 0, ∀i ∈ I, (2.7c)

µ∗
i ≥ 0, ∀i ∈ I, (2.7d)

µ∗
i gi(x

∗) = 0, ∀i ∈ I. (2.7e)

Condition (2.7d) is known as the sign condition, while (2.7e) is called the complemen-
tary slackness condition. These complementarity conditions imply that either con-
straint i is active or λ∗i = 0, or possibly both. In particular, the Lagrange multipliers
corresponding to the inactive inequality constraints are zero; consequently, we can omit
the terms for indices i /∈ A(x∗) from (2.7a) and rewrite it as follows

∇f(x∗) +
∑
i∈E

λ∗i∇hi(x) +
∑
i∈A

µ∗
i∇gi(x) = 0

A special case of complementarity is known as strict complementarity and it is
defined as follows.

Definition 2.14 (Strict Complementarity). Given a local solution x∗ of (2.6) and a
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vector λ∗ satisfying (2.7), we say that the strict complementarity condition holds if
exactly one of λ∗i and gi(x∗) is zero for each index i ∈ I.

2.6 Optimality Conditions for Problems with Varia-
tional Inequalities of the Second Kind Constraints

Let us consider a type of optimality problem where, among the constraints, there arises
a variational inequality of the second kind

min
x ∈ Rn

f(x, y) (2.8a)

s.t. ⟨F (x, y), v − y⟩+ j(v)− j(y) ≥ 0, ∀v ∈ Rn, (2.8b)

where F maps Rn × Rm into Rm, j is a non-differentiable convex continuous function
that maps Rm into Rn. Due to the non-differentiability of this function, it is im-
possible to transform (2.8) into the classical Mathematical Program with Equilibrium
Constraints (MPEC) setting.

The characterization of optimality systems for this problem remains an active area
of research. The structure of the constraints in this problem fails to satisfy classical
constraint qualification conditions such as MFCQ, ACQ. This phenomenon leads us to
a scenario where the KKT conditions are not necessary optimality conditions and can
lead to solutions that are not stationary points. In this scenario, even under the lack
of a constraint qualification condition, it is possible to characterize a primal optimality
condition to characterize a necessary optimality condition for a local optima of (2.8)
known as Bouligand stationarity, see definition 2.5.

It is not hard to see that (2.8) is a generalization of an MPEC problem by taking
j as the null function and restricting y ∈ Rn

+. Indeed, the constraints of the problem
now read

0 ≤ F (x, y) ⊥ y ≥ 0. (2.9)

Even in this simplified scenario, there do not exist KKT stationary points since the
complementarity structure appearing in the problem’s constraints fails to satisfy clas-
sical constraint qualification from non-linear programming. Here, several weaker sta-
tionarity notions can be derived by making use of tailor-made constraint qualification
conditions based on the relaxation of the complementarity structure (2.9). Indeed, sev-
eral notions of stationarity arise: Mordukhovich stationarity and Clarke stationarity,
to name the most used. Considering the Lagrange multipliers corresponding to the
inequality constraints in (2.9), the degenerate set corresponds to the following index
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Figure 2.1: Signs of the Lagrange multipliers for indices i ∈ B(x, y).

set
B(x, y) := {i : Fi(x, y) = 0, yi = 0}.

This set is particularly important since different stationarity notions characterize the
multipliers within it differently. It is worth mentioning that when this set is empty, we
say that the vector (x∗, y∗) satisfies the strict complementarity condition.

In Figure 2.1, we can see the differences in the properties for the Lagrange multi-
pliers within the degenerate set, according to the stationarity criteria. Meaning that
different stationarity systems give different kinds of information regarding the multi-
pliers. Moreover, it can be seen that strong stationarity is the one that provides the
sharpest characterization, followed by Mordukhovich and Clarke, respectively.

For problem (2.8), fewer stationarity results are available. Indeed, some weak re-
sults can be found in [3, 6], and very general conditions can be obtained. The work
by De Los Reyes [21] considers a variational inequality of the second kind as a con-
straint with the non-differentiable term j(v) =

∑n
i=1 ∥(Kv)i∥, with K being a bounded

and linear operator. When exploiting the problem’s non-differentiability structure, a
C-stationarity system was obtained using a tailored regularization approach. These re-
sults were then extended to image processing in [25]. Furthermore, in [22], the authors
consider the non-differentiable term as j(v) = ∥v∥1 and further characterize stationarity
points by investigating the differentiability properties of the solution map. Moreover,
for the problem at hand, Bouligand and Strong stationarity conditions were obtained.

Now, let us consider different approach for dealing with the non-differentiable term,
Outrata in [59] presents an approach where the variational inequality involved in (2.8)
can be reformulated as a generalized equation. This methodology allows the use
of tools from variational analysis to derive stationarity conditions. In this sense, let
us consider the following Generalized Mathematical Program with Equilibrium Con-
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straints (GMPEC):

min f(x, y) (2.10a)

s.t. 0 ∈ F1(x, y) +Q(F2(x, y)), (2.10b)

(x, y) ∈ ω (2.10c)

where F1 : Rn ×Rm → Rm and F2 : Rn ×Rm → Rl are two continuously differentiable
functions, ω ⊂ Rn × Rm closed non-empty and Q : Rl ⇒ Rm is a multifunction with
closed graph. Indeed, problem (2.8) can be casted in this form, where Q corresponds
to the convex subdifferential of J , F1(x, y) = ∇F (x, y) and F2(x, y) = y.

The author make use of an exact penalization of the equilibrium constraint to derive
a constraint qualification condition and consequently a result for M-stationarity for the
problem.

Theorem 2.9 (Outrata [59]). Let (x∗, y∗) be a local solution of (2.10) and suppose the
following constraint qualification[
∇xF2(x

∗, y∗)⊤ −∇xF1(x
∗, y∗)⊤

∇yF2(x
∗, y∗)⊤ −∇yF1(x

∗, y∗)⊤

][
w

z

]
∈ −NM

ω (x∗, y∗),

(w, z) ∈ NM
gphQ(F2(x

∗, y∗),−F1(x
∗, y∗))

 implies

w = 0,

z = 0
(2.11)

holds true. Then there exists a pair (ξ, η) ∈ ∂f(x∗, y∗), a pair (γ, δ) ∈ NM
ω (x∗, y∗), and

a KKT pair (w∗, z∗) ∈ NM
gphQ(F2(x

∗, y∗),−F1(x
∗, y∗)) such that

0 = ξ +∇xF2(x
∗, y∗)⊤w∗ −∇xF1(x

∗, y∗)⊤z∗ + γ,

0 = η +∇yF2(x
∗, y∗)⊤w∗ −∇yF1(x

∗, y∗)⊤z∗ + δ.

whereNM
gphQ(F2(x

∗, y∗),−F1(x
∗, y∗)) stands for Mordukhovich normal cone to the graph

of Q at (F2(x
∗, y∗),−F1(x

∗, y∗)).

2.7 Trust Region Methods

Let us consider a class of algorithms for finding a local solution of the problem

min
x ∈ Rn

f(x) (2.12a)

where f : Rn → R is a real-valued twice-continuously differentiable function. Classical
trust-region methods implement an iterative numerical procedure in which the objective
function f(x) is approximated in a suitable neighborhood of the current iterate, named
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trust region, by a model which is easier to handle than f(x).

By notating the sequence of iterates generated by the algorithm by {xk}, at each
iterate xk, we first define a model mk(x) that approximates the objective function
within a suitable neighborhood of xk. For this type of smooth problem the quadratic
model is widely used

mk(xk + s) = mk(xk) + ⟨gk, s⟩+
1

2
⟨s, Bks⟩, (2.13)

where mk(xk) = f(xk), gk = ∇xf(xk) and Bk is a symmetric approximation to the
hessian matrix ∇xxf(xk).

Said trust region is the set of all points

B∆k
:= {x ∈ Rn : ∥x− xk∥k ≤ ∆k},

where ∆k is called the trust-region radius , and ∥ · ∥k is an iteration-dependent norm.
Given this model and trust region, we next seek a trial step sk and a trial point xk+sk
with the aim of reducing the model while satisfying the bound ∥sk∥k ≤ ∆k. The step is
then accepted if the quality of the decrease predicted pred by the model is “good” when
compared with the decrease in the objective function ared. A pseudo-code describing
the basic computation steps in a trust-region method is depicted in Algorithm 2.1.

Algorithm 2.1 Basic Trust Region Algorithm
1: Chose initial point x0, initial trust region radius ∆0 and tol > 0.
2: Choose 0 ≤ η1 ≤ η2 < 1, 0 < γ1 ≤ 1 ≤ γ2
3: while Stopping criteria not met do
4: Choose ∥ · ∥k and define the model mk.
5: Compute a step sk that “sufficiently” reduces the model mk and such that xk +

sk ∈ B∆k
.

6: Compute f(xk + sk) and define

ρk =
f(xk)− f(xk + sk)

mk(xk)−mk(xk + sk)
.

If ρk ≥ η1, then define xk+1 = xk + sk; otherwise xk+1 = xk.
7: Update the trust region radius

∆k+1 =


γ2∆k, if ρk ≥ η2,

γ1∆k, if ρk ≤ η1,

∆k, else.

8: end while

A crucial point in the algorithm presented is the determination of step 5 in algo-
rithm 2.1. Since this is another optimization problem and possibly computationally
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expensive to solve, a suitable approximation that provides descent guarantees is often
preferred. Indeed, one of the most straightforward strategies for reducing the model
within the trust region is to examine the model’s behavior along the steepest descent
direction −gk within the trust region. Then, we define the Cauchy point as follows

xCk = argmin
t≥0, xk−tgk∈B∆k

mk(xk − tgk).

Furthermore, when assuming a quadratic model, its minimizer has a closed form.

Now, when dealing with non-differentiable optimization problems, i.e., f(x) is con-
tinuous but not necessarily differentiable, we cannot make use of the gradient in the
trust-region model. Even though trust-region methods have been investigated for non-
smooth optimization of locally Lipschitz continuous functions in [1], they usually rely
on the hypothesis that the cost function has to be regular .

Definition 2.15. Let f : Rn → R be Lipschitz continous at x∗ ∈ Rn. Then f is called
regular at x∗ if f is directionally differentiable at x∗ and we have

f ◦(x∗; d) = f ′(x∗; d), ∀d ∈ Rn,

where f ◦(x∗; ·) is the generalized directional derivative of f at x∗, defined as

f ◦(x;h) = lim sup
y→x, t→0

f(y + th)− f(y)
t

.

Indeed, in the case of a locally Lipschitz continuous and regular function f , in [1]
we see that the trust-region problem setting presented in (2.13) cannot be used due to
the nonexistence of ∇f(xk). A classical methodology for adapting the trust region for
the nonsmooth setting, as detailed in the seminal work by [63], is to change the model
function as follows

mk(xk + s) = m(xk) + ϕ(xk, s) +
1

2
⟨s, Bks⟩,

where ϕ : Rn×Rn → R is a given iteration function. Here, the idea is to let ϕ(x, s) and
Bk carry certain first-order and second-order information of f respectively, although
the first and second-order information of f may not exist in general.

Assuming f and ϕ to be regular, and taking ϕ with the following properties

1. For all x ∈ Rn, ϕ(x, 0) = 0 and ϕ(x, ·) is lower semi-continuous.

2. For any convergent subsequence {xk}, if sk → 0, then

f(xk + sk)− f(xk) ≤ ϕ(xk, sk) + o(∥sk∥),
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it can be proven that the nonsmooth trust-region algorithm converges to a C-stationary
point. Furthermore, assuming that ∂f(xk) is known, ϕ can be chosen as follows

ϕ(x, s) = max
g∈∂f(x)

⟨g, s⟩.

Now, for a general nonsmooth problem, this kind of model function does not behave
well in practice. In particular, there exist pathological examples where the sequence
generated by the algorithm converges to a point that is not stationary in any sense,
i.e., neither Clarke- nor Bouligand-stationary, see [18, Lemma 2.15]. The main reason
for failure in this example is the lack of neighborhood information. Thus, the authors
in [18] consider a generalization of the model function that incorporates information
about the objective function in a neighborhood of the current iterate. An example for
this generalization can be stated as follows

ϕ(x,∆, s) := max
g∈U(x,∆)

⟨g, s⟩, with U(x,∆) :=
⋃

ξ∈B∆(x)

∂f(ξ). (2.14)

Furthermore, given the complexity of evaluating this function, the authors propose
a two-phase algorithm that switches the model used according to a threshold radius
∆t > 0. Using ϕ it is possible to define a stationarity measure

Ψ(x,∆) := − min
∥s∥≤1

ϕ(x,∆, s) ≥ 0.

By taking appropriate assumptions on the model function, the authors proved the
convergence of the sequence of iterates using this algorithm to a C-stationary point as
detailed in the following proposition.

Proposition 2.2. Assuming that the matrices Bk in algorithm 2.2 satisfy

∥Bk∥ ≤ CB, ∀k ∈ N

with a constant CB > 0, and this algorithm does not terminate in finitely many steps.
Let {xk} be the sequence of iterates generated by algorithm 2.2, then:

1. 0 ∈ ∂f(x̄).

2. If {xk} admits an accumulation point, then the sequence of function values
{f(xk)} converges to some f̄ ∈ R.

3. Every accumulation point is C-stationary.

The details of the model switching mechanism are depicted in algorithm 2.2.
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Algorithm 2.2 Generic Nonsmooth Trust Region Algorithm
1: Chose initial point x0, initial trust region radius ∆0 and tol > 0.
2: Choose 0 ≤ η1 ≤ η2 < 1, 0 < γ1 ≤ 1 ≤ γ2
3: Choose ∥ · ∥k, a subgradient gk ∈ ∂f(xk) and a matrix Bk ∈ Rn×n

sym .
4: while Stopping criteria not met do
5: if ∆k ≥ ∆t then
6: Define the model

mk(xk + s) := mk(xk) + ⟨gk, s⟩+
1

2
⟨s, Bks⟩

7: Compute a step sk that “sufficiently” reduces the model mk and such that
xk + sk ∈ B∆k

.
8: Compute f(xk + sk) and define

ρk =
f(xk)− f(xk + sk)

mk(xk)−mk(xk + sk)
.

9: else
10: Define the model

m̃k(xk + s) := mk(xk) + ϕ(xk,∆k, s) +
1

2
⟨s, Bks⟩

11: Compute a step sk that “sufficiently” reduces the model m̃k and such that
xk + sk ∈ B∆k

.
12: Compute f(xk + sk) and define

ρk =

{
f(xk)−f(xk+sk)

m̃k(xk)−m̃k(xk+sk)
Ψ(x,∆) > ∥gk∥∆k,

0 Ψ(x,∆) ≤ ∥gk∥∆k.
.

13: end if
14: If ρk ≥ η1, then define xk+1 = xk + sk; otherwise xk+1 = xk.
15: Update the trust region radius

∆k+1 =


γ2∆k, if ρk ≥ η2,

γ1∆k, if ρk ≤ η1,

∆k, else.

16: end while
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In the problems presented in this work, we will be dealing with positiveness con-
straints for the optimization problem, i.e., the optimization problem in this setting
reads

min
x ∈ Rn

f(x) (2.15a)

s.t. x ≥ 0. (2.15b)

Problem (2.15) can be adapted to the trust-region methodology by changing the choice
for the trust-region norm. In particular, for this application, we use the l∞ ball for the
local approximation of the objective function f . Moreover, we consider only steps that
maintain the current iteration xk positive. Consequently, the trust-region subproblem
for an iteration xk now reads

min
s ∈ Rn

f(xk) + ⟨g, s⟩+
1

2
⟨s, Bs⟩

s.t. ∥s∥∞ ≤ ∆,

xk + s ≥ 0.

(2.16)

Indeed, this problem corresponds to a classical trust-region sub-problem with additional
positivity constraints. Such constraints have been studied before in [84, 86]. The main
idea is to reformulate the problem by taking advantage of the l∞ norm used for the
ball at the point xk

min
s ∈ Rn

f(xk) + ⟨g, s⟩+
1

2
⟨s, Bs⟩ (2.17a)

s.t. max(−(xk)j,−∆) ≤ sj ≤ ∆, ∀j = 1, . . . , n. (2.17b)

Again, for performance purposes, it is desirable to solve this problem approximately
in such a way that we can guarantee a descent in the cost function. With that goal
in mind, we will make use of a dogleg strategy that takes into account a Newton step
sN and a Cauchy step sC . In the context of this constrained problem, let us take
B̃∆ = B∆ ∩ Rn

+ and distinguish the following three cases

1. sN ∈ B̃∆,

2. sC ∈ B̃∆ and sN /∈ B̃∆,

3. sC /∈ B̃∆ and sN /∈ B̃∆.

For case 1 we take the Newton step; for case 2 a dogleg strategy for box constraints is
used; for case 3 we make use of a scaled Cauchy direction as described in Algorithm 2.3.
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sN

sC /∈ B̃∆, sN /∈ B̃∆

Figure 2.2: Two-dimensional example for the three different possible cases when
approximating the trust-region subproblem using a dogleg strategy with l∞ norm and
positivity constraints.

Algorithm 2.3 Dogleg Step for Box Constraints
1: Calculate Newton’s step by solving the linear system BksN = −gk.
2: if sN ∈ B̃∆ then
3: return sN
4: end if
5: Calculate sC = − ∥gk∥2

g⊤k ∗Bk∗gk
gk

6: if sC ∈ B̃∆ then
7: Find the maximum t such that sC + t(sN − sC) ∈ B̃∆.
8: return sDL = sC + t(sN − sC)
9: end if

10: Find the maximum t such that t ∗ sC/∥sC∥ remains in B̃∆.
11: return t ∗ sC

∥sC∥
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Chapter 3

Bilevel Parameter Learning

3.1 Bilevel Parameter Learning in Imaging

Computational Imaging methods aim to recover a good-quality image1 from noisy,
incomplete, or degraded images. In general, images degrade due to poor imaging
conditions or problems in the storage device or the communication channel, to name a
few. A frequentist model used to analyze this phenomenon reads as follows

f = A(u) + ζ, (3.1)

where u ∈ Rn is the original image, f ∈ Rm is the observed degraded image, ζ ∈ Rm is
the noise contained in the observed image, and A : Rn → Rm is a possible non-linear
forward operator that models the acquisition process. In most imaging models, A is
rank-deficient, leading to an ill-posed inverse problem. Therefore, non-uniqueness of
the solution or instability of the direct inversion of such an operator motivates different
solution techniques.

A classical way to solve such inverse problem is to make use of a variational “energy”
formulation. Using this methodology we can state the solution of (3.1) as the solution
of the following optimization problem

u∗ := argmin
u
E(u; θ, f), (3.2)

where u∗ ∈ Rn is the reconstructed image, f ∈ Rm is the degraded image and θ

is a parameter in the cost function. Particularly, the choice of this parameter has a
crucial impact on the solution. Indeed, Figure 3.1 show different quality reconstruction

1Throughout this work, we will consider images as n1×n2 grayscale pixel grids and, in particular,
we will work with a vectorized version that considers images as vectors of length n = n1n2 arranged
according to a row-major ordering.
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of a variational denoising model for different parameter choices. There have been
numerous approaches for choosing θ, such as cross-validation [76], generalized cross-
validation [35], the discrepancy principle [61] and Bayesian methods [72], among others.

This thesis will focus on Bilevel Parameter Learning techniques for finding optimal
parameters that can be used for a specific image denoising task. This is a supervised
learning methodology where we consider a training dataset of P pairs (utrue

k , fk), for k =

1, . . . , P , where each utrue
k corresponds to ground-truth data and fk to the corresponding

corrupted one. To obtain the optimal parameter θ, we consider the following class of
bilevel optimization problems:

min
θ

P∑
k=1

J(uk, u
true
k ) (3.3a)

s.t. uk ∈ argmin
u∈Rn

E(u; θ, fk), (3.3b)

where the upper level problem handles the optimal parameter loss function J , while
the lower-level problem corresponds to the image denoising model of interest.

In recent years, the combination of existing training sets with a bilevel optimization
framework has been developed for variational image restoration, both from variational
and nonsmooth analysis perspectives. Bilevel techniques for optimal parameter selec-
tion of variational models were proposed in the seminal works [25, 48]. The variational
models considered in [25] were based on the total variation (TV) seminorm, and dif-
ferent noise statistics were taken into account. Thereafter, apart of total variation
denoising problems, the bilevel learning framework has been used for higher-order to-
tal variation models [23, 24], blind image deconvolution [42], image segmentation [57,
64], mixed noise models [12], nonlocal models [19], learning the sample pattern for
magnetic resonance imaging (MRI) [75] and kernel parameter estimation for support
vector machines [46]. The bilevel methodology has also been extended in [13, 20, 37,
81] for learning different optimal scale-dependent total variation (TV) and generalized
total variation (TGV) parameters.

Even though all previous approaches derived optimality conditions for the bilevel
problem and proposed numerical methods for finding these parameters, they use a
local regularization procedure to overcome the lack of differentiability in the lower
level problem. This non-smoothness comes from using non-differentiable regularizers
such as total-variation or generalized total variation in the denoising problem.

In [42], we find an approach that avoids using said regularization. In this case, the
authors use a bilevel learning problem to determine optimal point spread functions in
blind deconvolution. The strategy described consists of reformulating the lower level
problem as a set-valued equation, leading to a reformulation of the bilevel problem as
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Low Optimal High

Figure 3.1: TV reconstruction results for different parameter values.

a generalized problem with equilibrium constraints (GMPEC). Then, by making use
of the Robinson strong regularity condition, it is possible to prove the existence of a
Lipschitz continuous solution operator. Furthermore, this property allows the use of
tools from variational geometry to propose a Mordukhovich (M-) and a Clarke (C-)
optimality system.

Another approach to deal with non-differentiable lower-level problems is a novel
method proposed by Ochs and coworkers [56], where instead of applying a smooth
approximation of the lower level problem, they propose a method based on differenti-
ating the iterations of a non-linear primal-dual algorithm. Moreover, an extension to
this idea is presented in [57] for suitable non-linear proximal distance functions that
lead to a differentiable algorithm while the minimization problem remains nonsmooth.
Alternatively, the work by Ehrhardt and coworkers [27] presents a methodology for
solving the lower level problem, which is a numerical challenge; by making use of in-
exact derivative-free optimization techniques, the methodology allows for an inexact
solution to be used in the context of learning optimal parameters of variational imaging
models. A similar approach based on randomized Itoh-Abe methods for general bilevel
problems is presented in [65].

Furthermore, the authors in [38] propose a different technique for the analysis of the
bilevel problem with a total generalized variation regularizer in the lower level problem.
Instead of having the primal form of the lower level problem, the authors use its Fenchel
predual version. This reformulation yields a bilevel problem that depends on the dual
variables, yielding a more amenable structure for the constraints of the reformulated
bilevel problem. A similar approach is found in [39, 40] for total variation based
models. Even though this reformulation avoids the non-differentiability problems in
the original version, the problem is not necessarily easier to solve, requiring a Moreau-
Yosida regularization on this pre-dual problem.
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3.2 Image Reconstruction Quality Metric

An essential component of the bilevel problem (3.3) is the loss function J , which models
the quality of the reconstruction when compared to the original image provided in the
dataset. One classic approach is to compute the difference between a ground truth
image utrue and its reconstruction u using a Mean Squared Error (MSE) criteria

J(u, utrue) =MSE(u, utrue) :=
1

2
∥u− utrue∥22,

which is closely related to the Peak Signal-to-Noise (PSNR) ratio quality measure

PSNR(u, utrue) := 10 log10(255
2/MSE(u, utrue)).

Even though the imaging community uses this measure widely due to its low compu-
tational complexity, it depends strongly on the image intensity scaling. Furthermore,
PSNR does not necessarily coincide with a human visual response to the image quality.

In [85] the authors exploit a known property of human visual perception. Under
the assumption that human visual systems are highly adapted for extracting structural
information from a scene, they propose a more reliable quality measure based on the
degradation of structural information in a distorted image. This metric, known as
Structural Similarity Index (SSIM), is calculated as follows

J(u, utrue) = SSIM(u, utrue) = l(u, utrue)c(u, utrue)s(u, utrue),

where

l(u, utrue) =
2µuµutrue + C1

µ2
u + µ2

utrue + C1

,

c(u, utrue) =
2σuσutrue + C2

σ2
u + σ2

utrue + C2

,

s(u, utrue) =
2σuutrue + C3

σu + σutrue + C3

,

and µu and σu correspond to the mean luminance and the standard deviation of the
image u respectively. The use of this quality measure in the bilevel optimization context
is, however, restrictive due to its non-smoothness and non-convexity.

The authors in [24], guided by the idea of preserving edge information on restored
images, propose a novel image quality metric aimed at prioritizing jump preservation:

J(u, utrue) :=
m∑
j=1

∥K(u− utrue)j∥ϵ,
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where K is a discretization of the gradient operator and ∥·∥ϵ is a Huber regularization of
the Euclidean norm. This metric is differentiable and convex, making it amenable when
used within an optimization framework. Furthermore, when used as a cost function
in bilevel learning, the reconstructed images attain a higher SSIM. Since SSIM better
captures the visual quality of a reconstructed image than PSNR, it is recommended for
this task as an alternative for using the non-convex SSIM metric directly, which leads
to additional numerical challenges.

3.3 Lower Level Denoising Problem

Recalling the lower level problem in (3.3), when addressing the image denoising case,
we can state it as the following optimization problem

u∗ ∈ argmin
u
E(u;λ, α) := F(λ, u) +R(α,Ku), (3.4)

where u∗ ∈ Rn is the reconstructed image, K a bounded linear operator, F is the
data fidelity and R is a regularization term. Furthermore, λ and α are parameters
associated to the data fidelity term and the regularization term, respectively. The data
fidelity term is usually modeled based on the statistical estimates or a noise model
coming from the physics behind the acquisition of the image, while the regularization
term promotes certain features which are known a-priori about the image. According
to [71], a normally distributed noise model in a corrupted image f corresponds to the
following data fidelity term

F(λ, u; f) = λ

2
∥u− f∥2.

In the case of a poisson noise distribution, this term was studied in [49, 73] and it
corresponds to F(λ, u; f) = λ

∑n
j=1 ui − fi log(ui). In [53] the author studied im-

pulse noise degraded images and proposed the following non-smooth fidelity term
F(λ, u; f) = λ∥u− f∥1. Figure 3.2 shows a comparison of the reconstruction obtained
using a l2 and a l1 data fidelity term in an image corrupted by impulse noise.
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Original Noisy l2 Data Term l1 Data Term

Figure 3.2: Reconstructed images using a Total Variation regularizer and l2 and l1
data terms obtained from a original image contaminated with impulse noise.

Regarding the regularization term, its choice is also critical for the quality of the
reconstruction. To illustrate these phenomena, let us consider a classical Tikhonov
regularizer [79] in the following problem

E(λ, u) := λ

2
∥u− f∥2 + 1

2

m∑
j=1

∥(Ku)j∥2, (3.5)

where ∥ · ∥ is the Euclidean norm and K : Rn → Rm×2 is the discrete gradient operator
with respect to directions in x and y, i.e., Ku = (Kxu,Kyu), here Kx : Rn → Rm

and Ky : Rn → Rm correspond to the discrete partial derivative with respect to the
horizontal and vertical direction, respectively. Moreover, the dimensions of the discrete
partial derivative depend on the choice of the discretization at hand. For instance, when
considering a centered finite differences discretization, the pixels at the image border
cannot be calculated. If we avoid using a border condition, we must exclude such pixels
from the calculation. It results in a smaller size grid size for the discretization.

As depicted in Figure 3.3, the solution obtained is not desirable, precisely since the
regularizer involved has very strong isotropic smoothing properties which leads to a
loss of edge information in the reconstructed image. To preserve the edge information
as much as possible, Rudin, Osher and Fatemi [71] proposed the use of the isotropic
total variation (TV) of the image as a regularization term, leading to its famous ROF
image denoising model

E(λ, u) := λ

2
∥u− f∥2 +

m∑
j=1

∥(Ku)j∥. (3.6)

Additionally, the total variation regularizer promotes solutions close to a piecewise
constant image, see Figure 3.3. Assuming that a crucial property in visual image
quality assessment is the separation of objects in a scene; as a result, having an image
reconstruction with sharp edges is highly desirable.
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Original Noisy Tikhonov Reg. TV Reg.

Figure 3.4: Reconstructed images for gaussian denoising using a Tikhonov regularizer
and a TV regularizer. Eventhough, the reconstruction in the case of the TV regula-
tizer presents sharp edges, a piecewise reconstruction promotes an artifact called the
staircasing effect.

Original Noisy Tikhonov Reg. TV Reg.

Figure 3.3: Reconstructed images for gaussian denoising using a Tikhonov regularizer
and a TV regularizer.

The main drawback of such a regularization procedure becomes apparent as soon
as it is applied to images that do not only consist of constant intensity regions and
jumps, but also possess more complicated structures, like smooth intensity variations or
textures. This well-known artifact introduced by TV regularization in this case is called
stair-casing [66], see Figure 3.4. Several high-order regularizers have been proposed to
deal with this problem [9, 14]. Furthermore, let us note that, alternatively, problem
(3.6) can be written as

E(u;α) := 1

2
∥u− f∥2 + α

m∑
j=1

∥(Ku)j∥. (3.7)

By considering a twice continuously differentiable data fidelity term and the TV
regularizer, we will define the following family of denoising problems

min
u∈Rn
E(u;λ, α) := F(λ, u; f) + α

m∑
j=1

∥(Ku)j∥, (3.8)

So far, the model parameters λ and α were assumed to be scalars, affecting all
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Figure 3.5: Mapping of a patch parameter.

pixels in the reconstructed image equally. This assumption does not necessarily hold
in practice. For instance, the effect of perspective in natural images changes the size
of objects according to their spatial relationship with respect to the viewer. In this
scenario, a source of noise will affect each object depicted in the image differently.

Therefore, to address this issue it is necessary to consider a scale-dependent param-
eter, meaning, we now will consider λ ∈ Rn

+ and α ∈ Rm
+ . This extension to the model

allows us to take one scalar value for each pixel of the image model and regularizer.
Indeed, a general family of scale-dependent problems looks as follows

min
u∈Rn
E(u;λ, α) := F(λ, u; f) +

m∑
j=1

αj∥(Ku)j∥. (3.9)

In [26] the authors showed that learned scale-dependent parameters are known
to overfit the training dataset, i.e., the quality of the reconstruction obtained using
a denoising algorithm with the learned parameters drops when used to denoise an
image not used in the training set (validation set). Therefore, there is a need for an
intermediate approximation; consequently, a further generalization for patch-dependent
parameters is necessary. Let us consider λ ∈ Rr and α ∈ Rp, with r << n and p << m,
then we define the patch operators P : Rp 7→ Rm and Q : Rr 7→ Rn that assigns each
component of λ and α for a patch in the image, respectively. A graphical description of
the mapping of these operators within the image can be found in Figure 3.5. Finally,
using these patch operators, the corresponding variational denoising model reads

E(u;λ, α) := F(Q(λ), u; f) +
m∑
j=1

P (α)j∥(Ku)j∥. (3.10)

Hereafter, without loss of generality, we will study the case of a scale-dependent
parameter. However, we can obtain the scalar and the patch-dependent model as
particular cases.

Now, regarding the bilevel problem (3.3), when the lower level problem has a closed-
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form solution, one can replace this solution in the upper-level problem. In this case, we
can reformulate the bilevel problem as a single-level problem, and one can use classical
single-level optimization methods to minimize the upper-level loss. Even though this
is not the case for the lower-level problems presented in this work, we can prove the
existence of a unique minimizer, as well as a necessary optimality condition for the
lower-level problem as detailed in Theorem 3.1.

Theorem 3.1. Let F be strongly convex with respect to u with λ > 0, then the opti-
mization problem (3.9) has a unique solution u∗. Moreover, a necessary and sufficient
condition for the lower level problem is given by the following variational inequality of
the second kind

⟨∇uF(λ, u∗), v − u∗⟩+
m∑
j=1

αj∥(Kv)j∥ −
m∑
j=1

αj∥(Ku∗)j∥ ≥ 0, ∀v ∈ Rn. (3.11)

Proof. To obtain the existence of a unique minimizer, let us recall our assumption for
F to be strongly convex. This property, along with the convexity of the total variation
seminorm, yields a strongly convex lower-level optimization problem. Consequently,
this problem has a unique minimizer. Now, to obtain the necessary and (due to con-
vexity) sufficient condition, let us take the minimizer u∗

F(λ, u∗) +
m∑
j=1

αj∥(Ku∗)j∥ ≤ F(λ,w) +
m∑
j=1

αj∥(Kw)j∥, ∀w ∈ Rn.

Taking v ∈ Rn, w = u∗ + t(v − u∗) and t ∈ R sufficiently small, it yields

0 ≤ F(λ, u∗ + t(v − u∗))−F(λ, u∗) +
m∑
j=1

αj∥(K(u∗j + t(v − u∗)))
j
∥ −

m∑
j=1

αj∥(Ku∗)j∥,

≤ F(λ, u∗ + t(v − u∗))−F(λ, u∗) + t

m∑
j=1

αj∥(Kv)j∥ − t
m∑
j=1

αj∥(Ku∗)j∥,

where we used the convexity of the total variation. Using to the differentiability of F ,
we get the result by dividing both terms by t and taking the limit t→ 0.

Using the Fenchel duality techniques described in Section 2.2.3, and by introducing
a dual variable q we can rewrite the variational inequality (3.11) as follows

∇uF(λ, u) +K⊤q = 0 (3.12a)

⟨qj, (Ku)j⟩ − αj∥(Ku)j∥ = 0, ∀j = 1, . . . ,m (3.12b)

∥qj∥ − αj ≤ 0, ∀j = 1, . . . ,m. (3.12c)
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Since the lower-level problems associated with variational image denoising do not
present a closed-form solution, we need to find a numerical approximation of its solu-
tion. For the separable structure of the problem, consisting of data and a regularization
term, several authors have presented different iterative schemes for approximating a
solution. It is worth mentioning that this manuscript will focus on models using the
isotropic total variation regularizer described in (3.6).

Even though the total variation regularizer is convex, lower semicontinuous, and
proper, we cannot use classical smooth optimization techniques due to its non-smoothness.
Moreover, in this general model, the data fidelity term can also present non-smoothness
depending on the assumptions on the noise models, i.e., impulse noise [53].

A popular numerical alternative for solving this problem is replacing the non-
differentiable term with a sufficiently smooth function. As a consequence, fast second-
order methods, i.e., methods where both gradient and hessian information are used to
define a descent direction, may be devised for the solution of the regularized problems.
Indeed, Newton and semi-smooth Newton methods, along with globalization strategies,
have been used to solve image restoration models (see, e.g., [25, 41]).

A first approach for dealing with this non-smoothness is to use a direct approach
based on sub-gradient methods. Although this approach appears to be the most natu-
ral, it comes with the drawback of a slow convergence rate typical for these methods [4,
Theorem 8.13]. Now, when assuming a smooth data fidelity term F and the fact that in
this work, the regularizer R is a simple convex lower semicontinuous function, forward-
backward methods may be applied. Here, considering a dual variable q ∈ Rm×2, the
convex dual reformulation of the dual problem reads

min
q∈Rm×2

F∗(−K∗q) +R∗(q).

Here, at each iteration, a gradient descent step on F∗ and a proximal step on R∗ are
performed. The resulting algorithm behaves robustly and gets faster as the smoothness
properties of F improve [4, Theorem 10.21]. Moreover, accelerated versions of this
scheme (like the FISTA algorithm [5]) became quite popular.

Alternatively, using the primal and dual variables in a saddle point formulation of
the lower-level problem, the appearing structure may be numerically exploited, namely,

min
u∈Rn

sup
q∈Rm×2

⟨q,Ku⟩Rm×2 + F(u)−R∗(q).

Moreover, for the problem used in this work, the saddle point formulation reads

min
u

max
q
⟨q,Ku⟩Rm×2 + F(λ, u)− δ{∥·∥2,∞≤α}(q),
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where, using the property that R is a norm, δ{∥·∥2,∞≤α} is the indicator function of the
polar ball

δ{∥·∥2,∞≤α}(q) =

0 if ∥qj∥2 ≤ αj ∀j,

+∞ else.

The strategy considers an alternate update, where we perform a proximal descent
on the primal variable u and a proximal ascent step in the dual variable q as follows

uk+1 = proxτF(uk − τK∗qk),

qk+1 = proxσR∗(qk + σKuk+1).

This procedure, called primal-dual hybrid gradient PDHG , can further be speed
up by considering a relaxation step (see, e.g., [15]). These primal-dual update steps
are well-suited for parallel computation, making these methods practical for high-
resolution image denoising [82]. Related popular primal-dual methods are the well-
known Douglas-Rachford and the Chambolle-Pock algorithms. An extension to non-
linear operators K can be found in [80].

For the denoising problem we are using for the lower level problem, the term proxσR∗

corresponds to the component-wise orthogonal projection onto l2-balls with radius α.
Therefore, with these components, we can derive a primal-dual hybrid gradient modified
method (PDHGM) for solving (3.9), see Algorithm 3.1.

Algorithm 3.1 PDHGM for Variational Image Denoising
1: Set up initial value for primal and dual variables (u0, q0).
2: Initialize steps τ, σ ≥ 0.
3: for k ≥ 0 do
4: uk+1 = proxτF(uk − τK∗qk)
5: qk+1 = proj∥·∥≤α(qk + σK(2uk+1 − uk))
6: end for
7: return (uk, qk).

All the methods mentioned above rely on the type of implementation of the oper-
ator K. The main numerical challenges are due to its size, since this operator scales
its memory requirements with the size of the input image. Therefore, special attention
must be provided when dealing with high-resolution images. The most naive implemen-
tation considers a matrix data structure for the linear operator K; this choice results
very restrictive in high-resolution scenarios. Consequently, other data structures are
worth exploring. In particular, several numerical programming languages provide a
sparse matrix representation that allows for efficient memory management when deal-
ing with large matrices. Lately, more memory-efficient numerical implementation can
be obtained using matrix-free operator implementations. These operators still repre-
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Figure 3.6: Performance benchmark comparison between sparse operator implemen-
tation vs matrix free implementation on solving the ROF denoising model using the
Chambolle-Pock algorithm.

sent a matrix and can be treated similarly but do not rely on the explicit creation of
a dense (or sparse) matrix itself. Conversely, the forward and adjoint operators are
represented by small pieces of code that mimic the effect of the matrix on a vector or
another matrix.

In Figure 3.6 a comparison benchmark between the two different implementation
paradigms is shown. Each paradigm’s corresponding version of the gradient operator is
used in a primal-dual algorithm that solves a gaussian image denoising model of increas-
ing image size. Furthermore, each model was run 20 times and logged via the python
timeit.timeit function for the time benchmarks and memory_profiler for the mem-
ory benchmark. Both tests were run on a MacBookPro 3,2 GHz Intel Core i5 with 16
GB 1600 Mhz DDR3 RAM. Moreover, NumPy and SciPy scipy.sparse.csr_matrix
as well as PyLops operator.

3.4 Failure of Standard Constraint Qualification Con-
ditions

A key goal in studying an optimization problem is the derivation of optimality con-
ditions; since they allow a proper characterization of stationary points. Therefore,
Lagrange multiplier’s existence theorems are usually proved on the basis of so-called
constraint qualification conditions [54]. Next, we will show that in the case of problem
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min
(λ, α)

J(u(λ, α);utrue) (3.13a)

s.t. u(λ, α) ∈ argmin
u∈Rn

F(λ, u) +
m∑
j=1

αj∥(Ku)j∥, (3.13b)

the situation is not standard at all and classical optimization theory typically fails.

Even though the primal-dual reformulation transforms problem (3.13) into a con-
strained non-linear optimization one, the difficulties related to the non-smoothness
remain in the constraints. One may try to circumvent this by considering a smooth
reformulation of the restrictions in order to use standard nonlinear programming tech-
niques. One possibility consists in rewriting the constraints in (3.13) using the Fenchel
primal-dual reformulation (3.12) in the equivalent differentiable form

min J(u, utrue)

s.t. ∇uF(λ, u) +K⊤q = 0,

⟨qj, (Ku)j⟩
2 − α2

j∥(Ku)j∥
2 = 0, ∀i = 1, . . . ,m,

−⟨qj, (Ku)j⟩ ≤ 0, ∀i = 1, . . . ,m,

∥qj∥2 − α2
j ≤ 0, ∀i = 1, . . . ,m,

−λj ≤ 0, ∀i = 1, . . . , n, ,

−αj ≤ 0, ∀i = 1, . . . ,m,

and try to apply nonlinear programming results. Considering a toy example where
F(λ, u) = λ

2
∥u− f∥2, u ∈ R2, α ∈ R, λ ∈ R, q ∈ R2 and K : R2 → R2 is defined by

K =

(
1 −1
0 1

)

we may indeed analyze case-by-case and verify whether a standard constraint qual-
ification has a chance to hold. To verify either the Linear Independence Constraint
Qualification Condition (LICQ) or the Mangasarian-Fromowitz Constraint Qualifica-
tion Condition (MFCQ), see Section 2.5, we have to analyze the rank of the matrix
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formed by the gradients of the equality constraints, which is given by:

∇h(u, q, λ, α) :=



λ 0 2(u1 − u2)(q21 − α2) 0

0 λ −2(u1 − u2)(q21 − α2) 2u2(q
2
2 − α2)

1 −1 2q1(u1 − u2)2 0

0 1 0 2q2u
2
2

u1 − f1 u2 − f2 0 0

0 0 2α(u1 − u2)2 2αu22


(3.14)

We then obtain the following cases:

(Ku)1 = 0, (Ku)2 ̸= 0: In this case we know that u1 − u2 = 0. Consequently,

∇h3(u, q, λ, α) = (0, 0, 0, 0, 0, 0)⊤.

Therefore, the columns of ∇h(u, q, λ, α) are not linearly independent, and neither
LICQ nor MFCQ hold.

(Ku)1 ̸= 0, (Ku)2 = 0: Similar than the previous case, we reach to the same violation
of linear independence, with ∇h4(u, q, λ, α) are equal to zero.

(Ku)1 = 0, (Ku)2 = 0: For this case, both columns∇h3(u, q, λ, α) and∇h4(u, q, λ, α)
are equal to zero, failing to fulfill the linear independence requirement for LICQ
or MFCQ.

(Ku)1 ̸= 0, (Ku)2 ̸= 0: In this case |qi| = α, i = 1, 2 and we obtain

∇h3(u, q, λ, α) = (0, 0, 2q1(u1 − u2)2, 0, 0, 2α(u1 − u2)2)
⊤
;

furthermore, ∇h4(u, q, λ, α) = (0, 0, 0, 2q2u
2
2, 0, 2αu

2
2)

⊤. The linear independence
may be satisfied in this case and existence of Lagrange multipliers may have a
chance to be justified. This is, however, a case with scarce practical relevance.
In the imaging setting, it would be related to completely smooth images (with
no edges).

This toy example illustrates that even in a simplified case, the requirements for
the existence of Lagrange multipliers are not met. Consequently, the main focus of
this thesis will be to find suitable constraint qualification conditions that guarantee
the existence of Lagrange multipliers for the Total Variation Bilevel learning problem
(3.3), as well as define appropriate stationarity conditions and its numerical solution.

37



3.5 Smooth Bilevel Parameter Learning

To finish our review for bilevel parameter learning models, we will address the existence
of optimal parameters and the optimality conditions for the regularized version of
said problems. These results will be of particular importance when dealing with the
numerics; namely, the two-phase trust-region algorithm detailed in Section 2.7, as it will
make use of a regularized version of the bilevel learning problem in one of the phases.
Therefore, let us consider a regularized version of the bilevel parameter learning model
(3.13) formulated as follows

min
(λ, α)

J(u(λ, α);utrue) (3.15a)

s.t. u(λ, α) ∈ argmin
u∈Rn

F(λ, u) +
m∑
j=1

αjhγ((Ku)j), (3.15b)

where hγ is a C2-Huber regularization of the Euclidean norm

hγ(z) =

−
∥z∥3
3γ2 + ∥z∥2

γ
if ∥z∥ ≤ γ,

∥z∥ − γ
3

if ∥z∥ > γ.
(3.16)

Assuming F to be strongly convex, along with the convexity of the regularized
term hγ, we have the strong convexity of the lower level problem; indeed, it implies
the uniqueness of its solution. Furthermore, thanks to (3.16), we now have the differ-
entiability of the lower level problem. It allows us to reformulate the bilevel problem
as follows

min
(λ, α)

J(u(λ, α);utrue) (3.17a)

s.t. ⟨∇uF(λ, u∗), v⟩+
m∑
j=1

αj⟨h′γ((Ku∗)j), (Kv)j⟩ = 0,∀ v ∈ Rn, (3.17b)

where we replaced the lower level optimization problem by its necessary and due to
convexity sufficient optimality condition. Now, in the reformulation presented in (3.17),
we see that it corresponds to a single-level optimization problem with a variational
equation constraint. It relates the bilevel optimization framework to mathematical
problems with equilibrium constraints (MPEC).

Moreover, the optimality system for a local solution of the regularized problem
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(3.17) can be obtained by introducing an adjoint state p, as follows

∇uJ(u
∗;utrue) +∇uuF(λ∗, u∗)⊤p+K⊤β = 0,

βj − α∗
jh

′′
γ((Ku∗)j)

⊤(Kp)j = 0, ∀j = 1, . . . ,m,

Arguing that this adjoint equation admits a unique solution, see [25, 48], there exists
a Lagrange multiplier p ∈ Rn such that an optimal solution (λ∗, α∗, u∗) satisfies the
following KKT optimality system

∇uF(λ∗, u∗) +K⊤µ = 0, (3.18a)

µj − α∗
jh

′
γ((Ku∗)j) = 0, ∀j = 1, . . . , n, (3.18b)

∇uJ(u
∗;utrue) +∇uuF(λ∗, u∗)⊤p+K⊤β = 0, (3.18c)

βj − α∗
jh

′′
γ((Ku∗)j)

⊤(Kp)j = 0, ∀j = 1, . . . ,m, (3.18d)

∇αJ(λ
∗, α∗;u∗) + ζ = 0, (3.18e)

ζj − h′γ((Ku∗)j)
⊤(Kp)j = 0, ∀j = 1, . . . ,m, (3.18f)

∇λJ(λ
∗, α∗;u∗) +∇uλF(λ∗, u∗)⊤p = 0. (3.18g)

As a final note, in [25, 48], the authors employed this technique and, thanks to a
limiting procedure γ → ∞ in (3.18), they managed to obtain a stationarity system
for the original bilevel problem (3.3). Moreover, it could be seen that the stationarity
system obtained using this procedure corresponds to a C-stationary point.

The rest of this work will split the analysis of the nonsmooth bilevel parameter
learning problem for the two different parameters presented λ and α separately. In
Chapter 4, we will focus on learning the parameter λ in (3.13), by assuming α = 1.
While Chapter 5 will study the case for learning the regularization parameter α and
assuming λ = 1.
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Chapter 4

Optimal Learning of the Data Fidelity
Weight

In this section, we will find optimal parameters for the lower level problem described in
(3.9), where only the parameter affecting the data fidelity term, λ ∈ Rn

+, is considered.
Indeed, we will make use of a bilevel parameter learning strategy by making use of a
training dataset of P pairs (utrue

k , fk), for k = 1, . . . , P , where each utrue
k corresponds

to ground-truth data and fk to the corresponding corrupted one. The optimization
problem now reads

min
λ ∈ Rn

+

P∑
k=1

J(uk(λ), u
true
k ) (4.1a)

s.t. uk(λ) = argmin
u∈Rn

{
F(λ, u; fk) +

m∑
j=1

∥(Ku)j∥

}
(4.1b)

where F : Rn
+ ×Rn → R is a strongly convex function with respect to u and linear

with respect to λ. As a particular case of this formulation, we have the spatially
dependent l2 data fidelity term

F(λ, u; fk) :=
1

2

n∑
j=1

λj(uj − (fk)j)
2.

Without loss of generality, we will analyze the case for a single training pair, and
for readability purposes, we will omit the dependence of fk, the data fidelity term.
Additionally, we will assume the existence of an optimal parameter λ∗ ̸= 01. This
assumption will ensure the contribution of the data fidelity term to the final solution,
which otherwise would only be governed by the total variation regularizer, leading to

1Alternatively, we may set the feasible set for λ as Rn
ϵ := [ϵ,∞)n with ϵ > 0 sufficiently small.
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a constant image regardless of the noisy input information.

Replacing the lower level optimization problem in (4.1) by its necessary and suffi-
cient condition derived in Theorem 3.1. It leads to the following optimization problem
with variational inequality constraints

min
λ ∈ Rn

+

J(u(λ), utrue) (4.2a)

s.t. ⟨∇uF(λ, u∗), v − u∗⟩+
m∑
j=1

∥(Kv)j∥ −
m∑
j=1

∥(Ku∗)j∥ ≥ 0, ∀v ∈ Rn (4.2b)

Likewise, we can rewrite the primal-dual formulation for the lower level problem as
a particular case of (3.12) with αj = 1, which reads

∇uF(λ, u) +K⊤q = 0 (4.3a)

⟨qj, (Ku)j⟩ − ∥(Ku)j∥ = 0, ∀j = 1, . . . ,m (4.3b)

∥qj∥ − 1 ≤ 0, ∀j = 1, . . . ,m. (4.3c)

4.1 Mordukhovich Stationarity

This section will address the primal-dual stationarity conditions for the bilevel problem
(4.1). Motivated by the constraint qualification condition presented in Section 2.5,
we can reformulate the lower-level optimization problem in (4.1b) as a generalized
equation. Indeed, by introducing a dual variable q ∈ Rm×2 where qj ∈ ∂(∥(Ku)j∥) we
may write the lower level problem equivalently as follows

0 ∈ ∇uF(λ, u) +Q(u), (4.4)

where Q : Rn ⇒ Rn is the set-valued operator associated with the Euclidean norm

Q(u) :=

K⊤q : q ∈ Rm×2,

qj =
(Ku)j

∥(Ku)j∥
, if ∥(Ku)j∥ ≠ 0,

∥qj∥ ≤ 1, if ∥(Ku)j∥ = 0.

 (4.5)

The characterization (4.5) is obtained by first considering the case ∥(Ku)j∥ ≠ 0, where,
in order to fulfill (4.3b), the relation qj = (Ku)j/∥(Ku)j∥ must hold. Otherwise, if
∥(Ku)j∥ = 0, the inequality (4.3c) holds. Equivalently, by making use of the definition
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of the graph of the multifunction Q, we may rewrite (4.5) as

∇uF(λ, u) +K⊤q = 0, (4.6a)

(u,K⊤q) ∈ gphQ, (4.6b)

(λ, u) ∈ Rn
+ × Rn, (4.6c)

where gphQ := {(u,K⊤q) ∈ Rn × Rn : K⊤q ∈ Q(u)}. Using this reformulation of the
constraints of the bilevel problem as a generalized problem with equilibrium constraints
(GMPEC), we will address the existence of Lagrange multipliers and a corresponding
stationarity system. In Theorem 2.9, a constraint qualification condition for GMPECs
that guarantees the existence of the Lagrange multipliers is presented; particularly,
this condition requires the graph of the set-valued map to be closed. Indeed, in our
case, the multifunctionQ corresponds to the convex subdifferential of the total variation
seminorm; therefore, the mapping u 7→ Q(u) is closed, as well as its graph [69, Theorem
24.4].

Now, the constraint qualification condition relies on fundamental definitions from
Mordukhovich’s generalized calculus; in particular, the Mordukhovich normal cone to
the graph of the multifunction Q. We briefly review these concepts in Section 2.4.
Moreover, using the structure of the set-valued operator Q presented in (4.5), let us
introduce the following notation for the inactive, strongly active, and biactive sets,
respectively:

I(u) := {j ∈ {1, . . . , n} : (Ku)j ̸= 0},
As(u) := {j ∈ {1, . . . , n} : ∥qj∥ < 1},
B(u) := {j ∈ {1, . . . , n} : ∥qj∥ = 1, (Ku)j = 0}.

qj

(Ku)j

j ∈ I(u)

(Ku)j

qj

j ∈ As(u)

(Ku)j

qj

j ∈ B(u)

Figure 4.1: Geometric interpretation of the primal-dual system for the different index
sets.

For the sake of readability, we will omit the arguments in the set notation whenever
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they can be inferred from the context.

We will start our analysis of the constraint qualification condition by providing a
precise characterization of the Bouligand tangent cone, the Fréchet normal cone, and
the Mordukhovich normal cone to the graph of the multifunction Q in the following
lemmata.

Lemma 4.1. The Bouligand tangent cone to the graph of Q, described in (4.5), is given
by

TgphQ(u,K⊤q) =
(δu,K⊤δq) :



(δq)j − Tj(Kδu)j = 0, if j ∈ I,

(Kδu)j = 0, if j ∈ As,

(Kδu)j = 0, ⟨(δq)j, qj⟩ ≤ 0 ∨

(Kδu)j = c̃qj(c̃ ≥ 0), ⟨(δq)j, qj⟩ = 0

}
if j ∈ B,


(4.7)

where

Tj(Kv)j =
(Kv)j
∥(Ku)j∥

−
(Ku)j(Ku)

⊤
j (Kv)j

∥(Ku)j∥3
, for v ∈ Rn.

Proof. Using the definition of the tangent cone,

TgphQ(u,K⊤q) = {(δu,K⊤δq) ∈ Rn × Rn : ∃tk → 0, ∃{(uk,K⊤qk)} ⊂ gphQ,

s.t.

(δu,K⊤δq) = limk→∞ t−1
k ((uk,K⊤qk)− (u,K⊤q)) if (u,K⊤q) ∈ gphQ

∅ if (u,K⊤q) /∈ gphQ.

}
(4.8)

Let us note that in this definition, we take sequences of elements in gphQ which, due
to its closedness, have a limit that also belongs to the graph. Owing in addition to the
surjectivity of the discrete partial derivative matrices, the limiting elements have the
form (δu,K⊤δq). Taking a ((δu,K⊤δq)) ∈ TgphQ((u,K⊤q)), then by the definition (4.8),
we know there exists a sequence {(uk,K⊤qk)} ⊂ gphQ converging to ((u,K⊤q)) ∈
gphQ and a sequence tk → 0. Moreover, for a particular k we know that (uk,K⊤qk) ∈
gphQ if and only if (qk)j ∈ ∂(∥(Kuk)j∥) for all j = 1, . . . ,m. This remark allows us to
split the analysis into different cases according to the definition of the multifunction
Q, where we can characterize each component as

(Kδu)j = lim
k→∞

(Kuk)j − (Ku)j
tk

, (δq)j = lim
k→∞

(qk)j − qj
tk

.

Case 1: j ∈ I(u). When approximating an inactive component ((Ku)j, qj), we can
only consider approximating sequences in the inactive set. Indeed, for sequences
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in this index set we know (qk)j = (Kuk)j/∥(Kuk)j∥, therefore

(qk)j − qj
tk

=
1

tk

(
(Kuk)j
∥(Kuk)j∥

−
(Ku)j
∥(Ku)j∥

)
.

Then, taking the limit as tk → 0 and considering that v/∥v∥ is differentiable in
this index set, we get

(δq)j =
(Kδu)j
∥(Ku)j∥

−
(Ku)j(Ku)

⊤
j (Kδu)j

∥(Ku)j∥3

Case 2: j ∈ As(u). An entry in this index set can only be approximated by sequences
in the same active set. Therefore (Kuk)j = 0 and ∥(qk)j∥ < 1. Consequently, the
following limit holds true

(Kδu)j = lim
tk→0

(Kuk)j − (Ku)j
tk

= 0.

For the dual variable we can approximate qj through any sequence in int B(0, 1);
therefore, in the limit k →∞ we can reconstruct (δq)j ∈ R2.

Case 3: j ∈ B(u). This case considers the approximation of a biactive component,
which can be approximated using three possible sequences: inactive, active, and
biactive.

When taking an approximation sequence belonging to the inactive set, we know
(Kuk)j ̸= 0, ∥(qk)j∥ = 1. Then the sequence of dual variables has the following
form

(qk)j =
(Kuk)j
∥(Kuk)j∥

.

Now, to find a characterization for the tangent direction in this component, let
us consider the following product

⟨(qk)j, (Kuk)j⟩ =
〈

(Kuk)j
∥(Kuk)j∥

, (Kuk)j
〉

= ∥(Kuk)j∥,

dividing by tk in both sides and taking the limit as k →∞ it yields ⟨qj, (Kδu)j⟩ =
∥(Kδu)j∥, which implies that both vectors qj and (Kδu)j are collinear, i.e., c

(Kδu)j = c̃qj for some c̃ ≥ 0,
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Using that ∥(qk)j∥ = ∥qj∥ = 1, the following relation holds〈
(qk)j − qj

tk
, qj

〉
=

1

tk
(⟨(qk)j, qj⟩ − ⟨qj, qj⟩),

=
1

tk
(⟨(qk)j, qj⟩ − ⟨(qk)j, (qk)j⟩+ ⟨(qk)j, (qk)j⟩ − ⟨qj, qj⟩),

= −
〈
(qk)j − qj

tk
, (qk)j

〉
.

Rearranging the terms in the last equation we get〈
(qk)j − qj

tk
, qj

〉
+

〈
(qk)j − qj

tk
, (qk)j

〉
= 0.

Taking the limit as k →∞, we get that ⟨(δq)j, qj⟩ = 0, finishing this part of the
proof.

Now, when taking an approximation through a sequence of biactive points, it
holds (Kuk)j = 0 and ∥(qk)j∥ = 1. It implies that it must hold

(Kδu)j = lim
tk→0

(Kuk)j − (Ku)j
tk

= 0.

Furthermore, by using the Cauchy-Schwarz inequality, we can upper bound the
following product 〈

(qk)j − qj
tk

, qj

〉
=

1

tk
(⟨(qk)j, qj⟩ − 1),

≤ 1

tk
(∥(qk)j∥∥qj∥ − 1),

= 0,

where we used the property that sequences in the biactive set must have ∥(qk)j∥ =
1. Consequently, taking the limit as k →∞, it holds ⟨(δq)j, qj⟩ ≤ 0.

The last possible approximation of a biactive component can be made using a
sequence that belongs to the active set. In this index set it holds (Kuk)j = 0

and ∥(qk)j∥ < 1. Then we have (Kδu)j = 0 and the product for the dual variable
reads 〈

(qk)j − qj
tk

, qj

〉
=

1

tk
(⟨(qk)j, qj⟩ − 1),

≤ 1

tk
(∥(qk)j∥︸ ︷︷ ︸

<1

∥qj∥ − 1) < 0,
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taking the limit as k →∞ we have that ⟨(δq)j, qj⟩ ≤ 0.

Let us name M(u,K⊤q) the right-hand side of (4.7). Using this notation, so far, we
have proven that TgphQ(u,K⊤q) ⊆ M(u,K⊤q). To prove the reverse inclusion let us
take a (δu,K⊤δq) ∈ M(u,K⊤q), thanks to the result in (2.5), we know that a pair
(δu,K⊤δq) is tangent to gphQ at (u,K⊤q) if

lim
t→0

dist((u+ tδu,K⊤q + tK⊤δq), gphQ)

t
= 0,

where dist(v, S) stands for the distance function of a vector v to the set S, presented pre-
viously in definition 2.7. We will prove in this section that (δu,K⊤δq) ∈ TgphQ(u,K⊤q).

Since the elements in M(u,K⊤q) are characterized by index set, let us consider
each case separately. The gphQ is a smooth manifold for the inactive components,
and the tangent elements are fully characterized by its derivative [68, Example 6.8].
Consequently, the elements defined in this index set are also contained in TgphQ(u,K⊤q).
Likewise, the strongly active components lie in the interior of gphQ, which by definition
of tangency, coincides with the definition provided inM.

Now, we will verify the biactive components. Let us recall that in this index set, the
gphQ has the form gphQ = {((Ku)j, qj) : (Ku)j = 0, ∥qj∥ = 1}. Since components in
this index set can have two possible characterizations, we will analyze each individually.
The first case corresponds to pairs ((Kδu)j, (δq)j) such that (Kδu)j = 0 and ⟨(δq)j, qj⟩ ≤
0. Taking t > 0, and the pair ((Ku)j + t(Kδu)j, qj + t(δq)j), its distance to the gphQ

is given by

inf
((Kx)j ,yj)∈gphQ

∥((Ku)j + t(Kδu)j, qj + t(δq)j)− ((Kx)j, yj)∥.

Furthermore, considering that in this index set both (Ku)j = (Kx)j = 0, this problem
now reads

inf
∥yj∥=1

∥qj + t(δq)j − yj∥,

and recalling that the solution yj to this problem is the projection onto the l2-ball, we
have the following assertion

inf
∥yj∥=1

∥qj + t(δq)j − yj∥ =
∥∥∥∥qj + t(δq)j −

qj + t(δq)j
∥qj + t(δq)j∥

∥∥∥∥ . (4.9)
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Now, let us consider the following bound

∥qj + t(δq)j∥2 = ∥qj∥+ 2t⟨(δq)j, qj⟩+ t2∥(δq)j∥2,
≤ ∥qj∥2 + t2∥(δq)j∥2,
= 1 + t2∥(δq)j∥2, (4.10)

where we used the property ⟨(δq)j, qj⟩ ≤ 0 in this index set. Furthermore, by squaring
the norm in the right-hand side of (4.9), we get∥∥∥∥qj + t(δq)j −

qj + t(δq)j
∥qj + t(δq)j∥

∥∥∥∥2 = ∥qj + t(δq)j∥2 − 2∥qj + t(δq)j∥+ 1,

= (∥qj + t(δq)j∥ − 1)2. (4.11)

Now, applying (4.10) and (4.11) in (4.9), dividing it by t, it yields

inf
∥yj∥=1

∥qj + t(δq)j − yj∥
t

=
|∥qj + t(δq)j∥ − 1|

t
≤
√
1 + t2∥(δq)j∥2 − 1

t
.

Finally, taking the limit as t→ 0 we get limt→0 dist(qj + t(δq)j, gphQ)/t = 0. Implying
that (δq)j is also a tangent vector.

The second characterization of vectors in the biactive set corresponds to the pairs
((Kδu)j, (δq)j) such that (Kδu)j = c̃qj with c̃ ≥ 0 or equivalently, due to colinearity,
⟨(Kδu)j, qj⟩ = ∥(Kδu)j∥, and ⟨(δq)j, qj⟩ = 0. In this section we will show that for any
t > 0, the pair ((Ku)j + t(Kδu)j, qj + t(δq)j) ∈ gphQ. With this goal in mind, let us
consider the following product

⟨qj + t(δq)j, (Ku)j + t(Kδu)j⟩ = ⟨qj + t(δq)j, (Ku)j⟩︸ ︷︷ ︸
=0

+t⟨qj, (Kδu)j⟩+ t2⟨(δq)j, (Kδu)j⟩,

= t⟨qj, (Kδu)j⟩+ t2⟨(δq)j, (Kδu)j⟩, (4.12)

where we used the property of (Ku)j = 0 for components in the biactive set. Now,
recalling that ⟨(Kδu)j, qj⟩ = ∥(Kδu)j∥, and using this property in (4.12), we get

⟨qj + t(δq)j + t(δq)j, (Ku)j + t(Kδu)j⟩ = t∥(Kδu)j∥+ t2⟨(δq)j, c̃qj⟩,
= ∥(Ku)j + t(Kδu)j∥+ t2c̃ ⟨(δq)j, qj⟩︸ ︷︷ ︸

=0

,

where we used the property of ⟨(δq)j, qj⟩ = 0. From the last equation, we may con-
clude that qj+ t(δq)j = (Ku)j+ t(Kδu)j/∥(Ku)j+ t(Kδu)j∥ with norm ∥qj+ t(δq)j∥ = 1,
which implies that the pair ((Ku)j+t(Kδu)j, qj+t(δq)j) is contained in gphQ. Further-
more, taking the distance of this pair to the graph, we get dist(((Ku)j + t(Kδu)j, qj +
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t(δq)j), gphQ) = 0 for all t. Consequently, this pair is a tangent vector, finishing the
proof.

Lemma 4.2. The Fréchet normal cone to the graph of Q is given by

NF
gphQ(u,K⊤q) =

(K⊤µ, p) :


µj + Tj(Kp)j = 0, if j ∈ I,
(Kp)j = 0 if j ∈ As,

(Kp)j = cqj(c ≥ 0), ⟨µj, qj⟩ ≤ 0, if j ∈ B.

 (4.13)

Proof. Recalling the definition of the Fréchet normal cone definition 2.8, we know that
we can build it as the polar of the tangent cone. Considering, in particular, directions
of the form δu ∈ ker(K) and δq = 0, it follows that, for a general normal vector (φ, p),
⟨φ, δu⟩ ≤ 0 for all δu ∈ ker(K) must hold. This implies φ ∈ ker(K)⊥ = range(K⊤).
Consequently, for (δu,K⊤δq) ∈ TgphQ(u,K⊤q) we have that the Fréchet normal cone
can be calculated as

NF
gphQ(u,K⊤q) = {(K⊤µ, p) ∈ Rn × Rn : ⟨(K⊤µ, p), (δu,K⊤δq)⟩ ≤ 0}.

We can rewrite the inequality as

n∑
j=1

⟨(Kδu)j, µj⟩+ ⟨(δq)j, (Kp)j⟩ ≤ 0.

Using this characterization, along with the tangent cone presented in Lemma 4.1, we
analyze the different cases according to their index set

Case 1: j ∈ I(u). Using the characterization of the tangent cone, we have

0 ≥ ⟨(Kδu)j, µj⟩+ ⟨Tj(Kδu), (Kp)j⟩ = ⟨(Kδu)j, µj + Tj(Kp)j⟩,

where we used the symmetry of Tj. Since there are no constraints over (Kδu)j,
it must necessarily hold µj + Tj(Kp)j = 0.

Case 2: j ∈ As(u). In this index set we know that (Kδu)j = 0 and (δq)j ∈ R2.
Consequently, when we consider the following product

⟨(δq)j, (Kp)j⟩ ≤ 0, ∀(δq)j

we obtain that (Kp)j = 0.

Case 3: j ∈ B(u). In this index set, there are two conditions in the normal directions.
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For the first one, we take (Kδu)j = 0, and the cone inequality reads

⟨(δq)j, (Kp)j⟩ ≤ 0,∀(δq)j s.t. ⟨(δq)j, qj⟩ ≤ 0. (4.14)

By considering the feasible set for (δq)j as Π(qj) := {(δq)j : ⟨(δq)j, qj⟩ ≤ 0}, we
can rewrite (4.14) as follows

⟨(δq)j, (Kp)j⟩ ≤ 0, ∀(δq)j ∈ Π(qj).

It implies that (Kp)j belongs to the polar cone of Π(qj), denoted by Π◦(qj);
therefore, it must hold (Kp)j = cqj with c ≥ 0 as shown in Figure 4.2a.

For the second case, we take (Kδu)j = c̃jqj(c̃j ≥ 0) and the cone inequality reads

⟨c̃jqj, µj⟩+ ⟨(Kp)j, (δq)j⟩ ≤ 0,∀(δq)j s.t. ⟨(δq)j, qj⟩ = 0. (4.15)

Again, we define the feasible set for (δq)j as Π(qj) := {(δq)j : ⟨(δq)j, qj⟩ = 0}, see
Figure 4.2b. Then, (4.15) may be rewritten as

⟨c̃jqj, µj⟩+ ⟨(Kp)j, (δq)j⟩ ≤ 0,∀(δq)j ∈ Π(qj). (4.16)

Now, considering in particular c̃j = 0 we may rewrite (4.15) as follows

⟨(Kp)j, (δq)j⟩ ≤ 0,∀(δq)j ∈ Π(qj).

Similarly to the previous case, we get (Kp)j ∈ Π◦(qj), yielding that (Kp)j = cqj

with c ∈ R. Furthermore, taking in particular (δq)j = 0 in (4.16), we obtain that
⟨qj, µj⟩ ≤ 0.

Finally, considering both cases, it yields the result.

qj

(Kp)j
Π(qj)

(a) Case 1

qj

Π(qj)

(Kp)j

(b) Case 2

Figure 4.2: Frechet normal cone in the biactive (set geometric interpretation).
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Lemma 4.3. Let (u,K⊤q) ∈ gphQ, described in (4.5) and a pair (K⊤µ, p) ∈ Rn ×Rn.
If (K⊤µ, p) satisfies the following conditions

µj + Tj(Kp)j = 0, if j ∈ I,
(Kp)j = 0, if j ∈ As, (4.17)

(Kp)j = 0, ∨
(Kp)j = cqj(c ∈ R), ⟨µj, qj⟩ = 0, ∨
(Kp)j = cqj(c ≥ 0), ⟨µj, qj⟩ ≤ 0.

 if j ∈ B.

Then, (K⊤µ, p) ∈ NM
gphQ(u,K⊤q), where NM

gphQ(u,K⊤q) is the Mordukhovich normal
cone to the graph of Q at (u,K⊤q).

Proof. Let us recall the definition of the Mordukhovich normal cone for our problem

NM
gphQ(u,K⊤q) = {(K⊤µ, p) ∈ Rn × Rn : (K⊤µk, pk) ∈ NF

gphQ(uk,K⊤qk) :

(K⊤µk, pk)→ (K⊤µ, p), (uk,K⊤qk)→ (u,K⊤q)}.

Considering limiting sequences in the inactive and active sets, we obtain the same
directions as those for the Fréchet normal cone. The differences lie in the biactive set,
where we can consider several approximations.

We may take approximation sequences with inactive components and from Lemma 4.2
we know

0 = (µk)j +
(Kpk)j
∥(Kuk)j∥

−
(Kuk)j⟨(Kuk)j, (Kpk)j⟩

∥(Kuk)j∥3
. (4.18)

Testing (4.18) with (Kpk)j, yields

0 = ⟨(µk)j, (Kpk)j⟩+
∥(Kpk)j∥2

∥(Kuk)j∥
− 1

∥(Kuk)j∥

〈
(Kuk)j
∥(Kuk)j∥

, (Kpk)j

〉2

.

Recalling (qk)j = (Kuk)j/∥(Kuk)j∥ if (Kuk)j = 0

0 = ⟨(µk)j, (Kpk)j⟩+
∥(Kpk)j∥2

∥(Kuk)j∥
− 1

∥(Kuk)j∥
⟨(qk)j, (Kpk)j⟩

2,

≥ ⟨(µk)j, (Kpk)j⟩+
∥(Kpk)j∥2

∥(Kuk)j∥
−
∥qk∥2∥(Kpk)j∥2

∥(Kuk)j∥
,

= ⟨(µk)j, (Kpk)j⟩,

where we used the property of ∥(qk)j∥ = 1. Furthermore, taking the limit as k → ∞,
we obtain that

⟨µj, (Kp)j⟩ ≤ 0. (4.19)
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Now, testing (4.18) with (qk)j we get the following product

0 = ⟨(µk)j, (qk)j⟩+
⟨(qk)j, (Kpk)j⟩
∥(Kuk)j∥

−
⟨(qk)j, (Kuk)j⟩⟨(Kuk)j, (Kpk)j⟩

∥(Kuk)j∥3
,

= ⟨(µk)j, (qk)j⟩+
⟨(qk)j, (Kpk)j⟩
∥(Kuk)j∥

−
∥(qk)j∥2

∥(Kuk)∥
⟨(qk)j, (Kpk)j⟩,

where using the fact that ∥(qk)j∥ = 1 and taking the limit as k →∞ we get

⟨µj, qj⟩ = 0. (4.20)

Furthermore, defining the set of feasible µj as Π(qj) := {µj : ⟨µj, qj⟩ = 0}, we may
constrain (4.19) to this set as follows

⟨µj, (Kp)j⟩ ≤ 0, ∀µj ∈ Π(qj).

Consequently, it must hold (Kp)j ∈ Π◦(qj) and that (Kp)j = cqj with c ∈ R.

For the case we take approximations through sequences in the active set, we know
(Kpk) = 0, which, when taking the limit as k →∞, yields (Kp)j = 0.

When the approximation is taken using sequences in the biactive set, we have
(Kpk)j = c(qk)j with c ≥ 0; which in the limit as k →∞ reads (Kp)j = cqj. Likewise,
for sequences of components in the biactive set, we know the following bound holds

⟨(µk)j, (qk)j⟩ ≤ 0.

Taking the limit as k → ∞ it yields ⟨µj, qj⟩ ≤ 0. In both cases, the cone directions
coincide with the Fréchet normal ones.

Finally, since we took sequences (K⊤µk, pk) ∈ NF
gphQ(uk,K⊤qk) ⊂ NM

gphQ(uk,K⊤qk)

and NM
gphQ(u,K⊤q) = clNF

gphQ(u,K⊤q), the proof is complete.

Theorem 4.1 (M-Stationarity). Let J : Rm → R be continuously differentiable, F :

Rn
+ ×Rn → R twice continuously differentiable and strongly convex with respect to u,

and (λ∗, u∗, q∗) be a local solution to (4.1). Then, there exist KKT multipliers (K⊤µ, p)
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and a ζ ∈ Rn such that

∇uF(λ∗, u∗) +K⊤q∗ = 0, (4.21a)

⟨q∗j , (Ku∗)j⟩ − ∥(Ku
∗)j∥ = 0, ∀j = 1, . . . ,m, (4.21b)

∥q∗j∥ ≤ 1, ∀j = 1, . . . ,m, (4.21c)

∇uuF(λ∗, u∗)⊤p−K⊤µ−∇J(u∗) = 0, (4.21d)

∇uλF(λ∗, u∗)⊤p− ζ = 0, (4.21e)

⟨ζ, λ∗⟩ = 0, (4.21f)

ζ ≤ 0, (4.21g)

(K⊤µ, p) ∈ NM
gphQ(u

∗,K⊤q∗) (4.21h)

Proof. To justify the existence of KKT multipliers, we will use the constraint qualifica-
tion condition presented in Theorem 2.9 with F1(x, y) = ∇F(λ, u), F2(x, y) = u. This
theorem guarantees the existence of said multipliers if the following inclusion[

0 −∇uλF(λ∗, u∗)⊤

I −∇uuF(λ∗, u∗)⊤

][
K⊤µ

p

]
∈ −NM

Rn
+
(λ∗)×NM

Rn(u∗) = −NRn
+
(λ∗)× {0} (4.22)

implies K⊤µ = 0 and p = 0. Here, we used Remark 2.2 to characterize the Mor-
dukhovich normal cone for the feasible set of λ∗, which coincides with the convex
normal cone. Therefore, NM

Rn
+
(λ∗) = NRn

+
(λ∗) = {v ∈ Rn : ⟨v, λ∗⟩ = 0, v ≤ 0}.

Consequently, (4.22) can be written as

K⊤µ−∇uuF(λ∗, u∗)⊤p = 0, (4.23)

⟨∇uλF(λ∗, u∗)⊤p, λ∗⟩ = 0, (4.24)

∇uλF(λ∗, u∗)⊤p ≤ 0. (4.25)

Now, let us take (K⊤µ, p) ∈ NM
gphQ(u

∗,K⊤q∗) and let us multiply (4.23) by p on the
left. The product now reads

⟨p,K⊤µ⟩ − ⟨p,∇uuF(λ∗, u∗)⊤p⟩ = 0.

By splitting the product according to the different index sets, we have

⟨p,∇uuF(λ∗, u∗)⊤p⟩ =
∑
j∈I

⟨µj, (Kp)j⟩+
∑
j∈As

⟨µj, (Kp)j⟩+
∑
j∈B

⟨µj, (Kp)j⟩

Considering the characterization of the Mordukhovich normal cone, particularly for
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any j ∈ As, we know (Kp)j = 0. Then, the previous product now reads

⟨p,∇uuF(λ∗, u∗)⊤p⟩ =
∑
j∈I

⟨µj, (Kp)j⟩+
∑
j∈B

⟨µj, (Kp)j⟩.

Furthermore, for j ∈ B we have that (Kp)j is either equal to zero, (Kp)j = cqj with
c ∈ R and ⟨µj, qj⟩ = 0, or (Kp)j = cqj with c ≥ 0 and ⟨µj, qj⟩ ≤ 0; consequently, the
product yields

⟨p,∇uuF(λ∗, u∗)⊤p⟩ =
∑
j∈I

−⟨Tj(Kp)j, (Kp)j⟩︸ ︷︷ ︸
≤0

+
∑
j∈B

c ⟨µj, qj⟩︸ ︷︷ ︸
≤0

≤ 0,

where we used the positive semi-definiteness of the matrix Tj and the characterization
of the Mordukhovich normal cone for j ∈ B. Furthermore, using the strong convexity of
F we know ⟨p,∇uuF(λ∗, u∗)⊤p⟩ ≥ 0. Both inequalities imply p = 0 and consequently,
replacing this result in (4.23), it yields K⊤µ = 0.

This previous result, allow us to guarantee the existence of KKT multipliers (K⊤µ, p) ∈
NM

gphQ(u
∗,K⊤q∗) and a ζ ∈ NM

Rn
+
(λ∗), such that

0 = ∇J(u∗) +K⊤µ−∇uuF(λ∗, u∗)⊤p, (4.26)

0 = −∇uλF(λ∗, u∗)⊤p+ ζ. (4.27)

To recover the optimality system in (4.21), let us take (λ∗, u∗, q∗), a local optimal
solution of (4.1). Then, note that equations in (4.26) and (4.27) correspond to equations
(d) and (e) respectively. Taking a ζ ∈ Rn we must add the conditions ⟨ζ, λ∗⟩ = 0 and
ζ ≤ 0 to guarantee it is contained in NM

Rn
+
(λ∗), yielding equations (f) and (g). Finally,

equations (a-c) correspond to the state constraints of the original problem.

4.2 Bouligand Stationarity

Let us now introduce the solution operator for the lower-level problem S : Rn
+ ∋ λ →

u ∈ Rn that maps each parameter λ ∈ Rn
+ to the corresponding reconstruction u ∈ Rn.

If this mapping is single-valued, we can make use of it to formulate (3.3) as a reduced
optimization problem

min
λ ∈ Rn

+

j(λ) := J(S(λ)). (4.28)

Furthermore, if the solution operator is Bouligand (B)-differentiable, i.e., it is locally
Lipschitz continuous and directionally differentiable, we can make use of the chain rule
for B-differentiable functions, see theorem 2.8, to conclude that the composite mapping
J , as a function of λ, is B-differentiable as well. In such a case, its directional derivative
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in a direction h is given by

j′(λ;h) = ⟨∇J(u), S ′(λ;h)⟩, (4.29)

where S ′(λ;h) is the directional derivative of the solution operator in direction h. More-
over, if λ∗ is a local optimal solution and u∗ = S(λ∗) its corresponding reconstruction,
then it satisfies the following necessary optimality condition

j′(λ∗;λ− λ∗) = ⟨∇J(u∗), S ′(λ∗;λ− λ∗)⟩ ≥ 0, ∀λ ∈ Rn
+. (4.30)

A point λ∗ satisfying the necessary condition (4.30) is called Bouligand (B)-stationary.
This type of stationarity condition is based on the tangent cone to our feasible parame-
ter set and can be interpreted as the counterpart of the implicit programming approach
in the discussion of finite-dimensional MPECs, see [51, Lemma 4.2.5].

However, to fully characterize the Bouligand-stationarity condition (4.30), we need a
characterization for the directional derivative of the solution operator. Now, regarding
the solution operator for the lower-level problem (4.1b), we obtain the following result.

Theorem 4.2. The solution operator for the lower-level problem (4.1b) S : Rn
+ ∋ λ→

u ∈ Rn is locally Lipschitz continuous.

Proof. Thanks to Theorem 3.1, we know the lower-level problem has a unique solution.
Moreover, λ1, λ2 ∈ Rn

+ and its corresponding solutions u1, u2 satisfy

⟨∇uF(λ1, u1), v − u1⟩+
n∑

j=1

∥(Kv)j∥ −
n∑

j=1

∥(Ku1)j∥ ≥ 0, ∀v ∈ Rn

⟨∇uF(λ2, u2), w − u2⟩+
n∑

j=1

∥(Kw)j∥ −
n∑

j=1

∥(Ku2)j∥ ≥ 0, ∀w ∈ Rn.

Taking in particular v = u2 and w = u1 and adding the inequalities, it yields

⟨∇uF(λ2, u2)−∇uF(λ1, u1), u2 − u1⟩ ≤ 0. (4.31)

Since F is linear with respect to λ, it holds that ∇uF maintains the linearity property
with respect to λ as well. Using this property and adding a zero to (4.31), it reads

⟨∇uF(λ2 − λ1, u2), u2 − u1⟩+ ⟨∇uF(λ1, u2)−∇uF(λ1, u1), u2 − u1⟩ ≤ 0.

Using the strong convexity with respect to u, we know there exists a constant µ > 0

such that the following bound holds true

⟨∇uF(λ2 − λ1, u2), u2 − u1⟩+ µ∥u2 − u1∥2 ≤ 0. (4.32)
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Furthermore, the linearity of F with respect to λ also implies it is Lipschitz continuous
with respect to λ as well. We will name Lλ to its Lipschitz constant, and we may
bound (4.32) using the Cauchy-Schwarz inequality as follows

µ∥u2 − u1∥2 ≤ ⟨∇uF(λ2 − λ1, u2), u1 − u2⟩,
≤ ∥∇uF(λ2, u2)−∇uF(λ1, u2)∥∥u2 − u1∥,
≤ Lλ(u2)∥λ2 − λ1∥∥u2 − u1∥.

Finally, by rearranging the terms, we obtain the result

∥u2 − u1∥ ≤
Lλ(u2)

µ
∥λ2 − λ1∥.

4.2.1 Directional Differentiability

In this section, we will study the differentiability properties of the solution operator
for the lower-level problem (4.1b). This study will require a sensitivity analysis of the
solution operator concerning the regularization parameter λ. By taking a perturbed
regularization parameter λt in the primal-dual formulation for the lower-level problem
(4.3) such that λtj = λj + thj ≥ 0 we get the following perturbed lower-level problem

∇uF(λt, ut) +K⊤qt = 0, (4.33a)

⟨qtj, (Kut)j⟩ − ∥(Ku
t)j∥ = 0, ∀j = 1, . . . ,m, (4.33b)

∥qtj∥ ≤ 1, ∀j = 1, . . . ,m. (4.33c)

Thanks to the boundedness of qt, there exist a subsequence, denoted the same, so that
qt → q̃ ∈ Rm×2, to some q̃, as t → 0. Additionally, thanks to the Lipschitz continuity
of the solution operator, we know that the following sequence is bounded∥∥∥∥ut − ut

∥∥∥∥ ≤ Lλ(u)

µ

∥∥∥∥λt − λt
∥∥∥∥ =

Lλ(u)

µ
∥h∥ <∞.

Therefore, we can guarantee the existence of a subsequence of {(ut − u)/t}, denoted
with the same symbol, satisfying

lim
t→0

ut − u
t
→ η ∈ Rn. (4.34)
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Theorem 4.3. The limit described in (4.34) satisfies η ∈ C(u) where

C(u) :=

v ∈ Rn :

(Kv)j = 0, ∀j ∈ As,

⟨qj, (Kv)j⟩ = ∥(Kv)j∥, ∀j ∈ B.

 (4.35)

Proof. By adding the complementarity relations (4.33) and (4.3) and dividing by t we
get

0 =

〈
qtj − qj
t

, (Kut)j

〉
+

〈
qj,

(Kut)j − (Ku)j
t

〉
−

(
∥(Kut)j∥ − ∥(Ku)j∥

t

)
. (4.36)

When considering a point in j ∈ As ∪ B, we know the sequence (Kut)j → (Ku)j = 0.
Therefore, taking the limit as t→ 0 in (4.36), we get

0 = ⟨qj, (Kη)j⟩ − ∥(Kη)j∥,∀j ∈ As ∪ B. (4.37)

Now, considering j ∈ As, we know in this index set ∥qj∥ < 1. Using Cauchy-Schwarz
in (4.37) we get

0 = ⟨qj, (Kη)j⟩ − ∥(Kη)j∥ ≤ ∥(Kη)j∥(∥qj∥ − 1),

which implies (Kη)j = 0 for all j ∈ As.

Remark 4.1. If q1 and q2 are two different slack variables associated with the solution
u in (4.3), then the two sets Ci for i = 1, 2 defined as follows

Ci :=

v ∈ Rn :

(Kv)j = 0, if ∥qij∥ < 1,

⟨qij, (Kv)j⟩ = ∥(Kv)j∥, if (Ku)j = 0, ∥qij∥ = 1.

 ,

coincide, since K⊤q1 = −∇uF(λ, u) = K⊤q2. Consequently, the set C(u) does not
depend on the slack variable, only on the solution u.

Lemma 4.4. The cone C(u) can alternatively be written as

C(u) =

{
v ∈ Rn : ⟨K⊤q, v⟩ ≥

∑
j∈I

〈
(Ku)j
∥(Ku)j∥

, (Kv)j

〉
+

∑
j∈As∪B

∥(Kv)j∥

}
(4.38)

Proof. Let us denote the set in (4.38) asM. Taking v ∈ C, as in (4.35), and using its
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definition, we obtain

⟨K⊤q, v⟩ =
∑
j∈I

⟨qj, (Kv)j⟩+
∑
j∈As

⟨qj, (Kv)j⟩+
∑
j∈B

⟨qj, (Kv)j⟩,

=
∑
j∈I

〈
(Ku)j
∥(Ku)j∥

, (Kv)j

〉
+
∑
j∈As

⟨qj, (Kv)j︸ ︷︷ ︸
=0

⟩+
∑
j∈B

∥(Kv)j∥,

and, consequently, C ⊂ M.

To prove the reverse inclusion, let us take v ∈ M. Then, we may rewrite the
inequality in (4.38) as follows

∑
j∈I

〈
(Ku)j
∥(Ku)j∥

, (Kv)j

〉
+

∑
j∈B∪As

⟨qj, (Kv)j⟩ ≥

∑
j∈I

〈
(Ku)j
∥(Ku)j∥

, (Kv)j

〉
+

∑
j∈As∪B

∥(Kv)j∥, (4.39)

which can be rewritten as ∑
j∈B∪As

⟨qj, (Kv)j⟩ ≥
∑

j∈As∪B

∥(Kv)j∥.

Now, using the Cauchy-Schwarz inequality and ∥qj∥ ≤ 1, for all j ∈ As ∪ B, we can
upper bound this term as follows∑

j∈As∪B

∥(Kv)j∥ ≤
∑

j∈As∪B

⟨qj, (Kv)j⟩ ≤
∑

j∈As∪B

∥qj∥︸︷︷︸
≤1

∥(Kv)j∥ ≤
∑

j∈As∪B

∥(Kv)j∥. (4.40)

Therefore, since the lower and upper bounds are the same, it holds∑
j∈As∪B

⟨qj, (Kv)j⟩ −
∑

j∈As∪B

∥(Kv)j∥ = 0. (4.41)

Consequently, for each index in As ∪ B we have

⟨qj, (Kv)j⟩ = ∥(Kv)j∥, ∀j ∈ As ∪ B.

Taking, in particular, j ∈ As and using the Cauchy-Schwarz inequality, along with the
property ∥qj∥ < 1 in the active set, it yields

∥(Kv)j∥ = ⟨qj, (Kv)j⟩ ≤ ∥qj∥︸︷︷︸
<1

∥(Kv)j∥ < ∥(Kv)j∥,
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which implies that (Kv)j = 0 for all j ∈ As and it follows thatM⊂ C, concluding the
proof.

Now, to prove the directional differentiability of the solution operator for the lower-
level problem (4.1b), we will first demonstrate the following lemmata.

Lemma 4.5. Let Rn
+ ∋ λ and Rn

+ ∋ λ+ th. Then for every v ∈ C, it holds

〈
K⊤
(
qt − q
t

)
, v

〉
≤
∑
j∈I

1

t

〈
(Kut)j
∥(Kut)j∥

−
(Ku)j
∥(Ku)j∥

, (Kv)j

〉
. (4.42)

Proof. Let us first start by taking v ∈ C(u) and bound the following product

⟨K⊤qt, v⟩ =
∑
j∈I

⟨qtj, (Kv)j⟩+
∑
j∈As

⟨qtj, (Kv)j︸ ︷︷ ︸
=0

⟩+
∑
j∈B

⟨qtj, (Kv)j⟩,

≤
∑
j∈I

〈
(Kut)j
∥(Kut)j∥

, (Kv)j

〉
+
∑
j∈B

∥(Kv)j∥,

Now, given that we took v ∈ C(u), we know that the bound in Lemma 4.4 holds, i.e.,

⟨K⊤q, v⟩ ≥
∑
j∈I

〈
(Ku)j
∥(Ku)j∥

, (Kv)j

〉
+
∑
j∈B

∥(Kv)j∥.

Adding both inequalities and dividing by t yields the result.

Lemma 4.6. Let Rn
+ ∋ λ and Rn

+ ∋ λ+ th. It holds

〈
K⊤
(
qt − q
t

)
,
ut − u
t

〉
≥
∑
j∈I

1

t

〈
(Kut)j
∥(Kut)j∥

−
(Ku)j
∥(Ku)j∥

,
(Kut)j − (Ku)j

t

〉
.

Proof. For t sufficiently small, we can split the product by their index set

〈
K⊤
(
qt − q
t

)
,
ut − u
t

〉
=
∑
j∈I

1

t

〈
(Kut)j
∥(Kut)j∥

−
(Ku)j
∥(Ku)j∥

,
(Kut)j − (Ku)j

t

〉

+
∑

j∈As∪B

〈
qtj − qj
t

,
(Kut)j − (Ku)j

t

〉
.

Considering the index set As ∪ B, the complementarity relations in (4.3) and (4.33)
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can be used to bound the following product∑
j∈As∪B

1

t2
⟨qtj − qj, (Kut)j − (Ku)j⟩

=
1

t2

∑
j∈As∪B

⟨qtj, (Kut)j⟩ − ⟨q
t
j, (Ku)j⟩ − ⟨qj, (Ku

t)j⟩+ ⟨qj, (Ku)j⟩,

≥ 1

t2

∑
As∪B

∥(Kut)j∥ − ∥qj∥∥(Ku
t)j∥ − ∥q

t
j∥∥(Ku)j∥+ ∥(Ku)j∥,

≥ 0.

which implies the result.

Theorem 4.4. Let λ ∈ Rn
+ and h ∈ Rn be a direction such that λ+ th ≥ 0, for t small

enough. The solution operator S : λ → S(λ) = u ∈ Rn is directionally differentiable
and its directional derivative η ∈ C(u) at u, in direction h, is given by the solution of
the following variational inequality:

⟨∇uuF(λ, u)η +∇uF(h, u), v − η⟩+
∑
j∈I

⟨Tj(Kη)j, (Kv)j − (Kη)j⟩ ≥ 0, ∀v ∈ C, (4.43)

where Tj(Kv)j =
(Kv)j

∥(Ku)j∥
− (Ku)j(Ku)⊤j (Kv)j

∥(Ku)j∥3
for v ∈ Rn.

Proof. Taking (4.3) and (4.33) and testing it with v − ut−u
t

we get

0 =

〈
∇uF(λ+ th, ut) +K⊤qt −∇uF(λ, u)−K⊤q, v − ut − u

t

〉
,

=

〈
∇uF(λ, ut)−∇uF(λ, u), v −

ut − u
t

〉
+ t

〈
∇uF(h, ut), v −

ut − u
t

〉
+

〈
K⊤(qt − q), v − ut − u

t

〉
,

where we used the linearity of F with respect to λ and the fact that K is a linear
operator. Furthermore, dividing by t, it now reads

0 =

〈
∇uF(λ, ut)−∇uF(λ, u)

t
, v − ut − u

t

〉
+

〈
∇uF(h, ut), v −

ut − u
t

〉
+

〈
K
(
qt − q
t

)
, v − ut − u

t

〉
,
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and using the bounds presented in Lemmas 4.5 and 4.6 it yields

0 ≤
〈
∇uF(λ, ut)−∇uF(λ, u)

t
, v − ut − u

t

〉
+

〈
∇uF(h, ut), v −

ut − u
t

〉
+
∑
j∈I

1

t

〈
(Kut)j
∥(Kut)j∥

−
(Ku)j
∥(Ku)j∥

, (Kv)j −
(Kut)j − (Ku)j

t

〉
.

Taking the limit as t → 0, as well as the differentiability of the term x/∥x∥ in the
inactive set, it yields

0 ≤ ⟨∇uuF(λ, u)η, v − η⟩

+ ⟨∇uF(h, u), v − η⟩+
∑
j∈I

〈
(Kη)j
∥(Ku)j∥

−
(Ku)j(Ku)

⊤
j (Kη)j

∥(Ku)j∥3
, (Kv)j − (Kη)j

〉
.

Using the definition of Tj and recalling v, η ∈ C, the inequality takes the form in (4.43).
Now it is required to verify the uniqueness of the limit. For this purpose, let us note
that (4.43) is a variational inequality of the first kind

⟨∇uuF(λ, u)η, v − η⟩+
∑
j∈I

⟨Tj(Kη)j, (Kv)j − (Kη)j⟩ ≥ ⟨−∇uF(h, u), v − η⟩, ∀v, η ∈ C.

Using the strong convexity of F and the positive semi-definiteness of Tj, the bilinear
form on the left-hand side is V-elliptic, i.e.,

⟨∇uuF(λ, u)v, v⟩+
∑
j∈I

⟨Tj(Kv)j, (Kv)j⟩ ≥ c∥v∥2, for some c > 0.

Moreover, given that the right-hand side is linear and continuous with respect to v−η,
we know by [34, Chapter I, Theorem 3.1] that there exists a unique solution for this
variational inequality.

Once we have demonstrated the Bouligand differentiability of the solution operator
and the corresponding characterization of its directional derivative, described in this
section, we arrive at the following result.

Theorem 4.5. Let λ∗ ∈ Rn
+ be a local optimal solution of (4.28) and u∗ = S(λ∗).

Then λ∗ is a B-stationary point, i.e., it satisfies the following inequality

⟨∇J(u∗), S ′(λ∗;λ− λ∗)⟩ ≥ 0, ∀λ ∈ Rn
+, (4.44)

where S ′(λ∗;λ− λ∗) =: η is the unique solution to (4.43) with h = λ− λ∗.

Proof. Since we know that the solution operator is directionally differentiable, as shown
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in theorem 4.4, along with its local Lipschitz continuity as demonstrated in theorem 4.2,
we have that the solution operator is Bouligand differentiable. Consequently, a local
optimal solution λ∗ for problem (4.28) and u∗ = S(λ∗) its optimal reconstruction,
satisfy the necessary optimality condition (4.30).

4.2.2 Strict Complementarity

The characterization of the directional differentiability can take a different formulation
if the biactive set is empty, i.e., B = ∅. Then, the solution operator has stronger
differentiability properties.

Theorem 4.6. Assuming the index set B is empty. Then, the solution operator for the
lower level problem (4.1b) is Fréchet differentiable, and the derivative can be computed
as the solution of the following system of equations

∇uuF(λ, u)η +∇uF(h, u) +K⊤ξ = 0, (4.45a)

ξj − Tj(Kη)j = 0, ∀j ∈ I, (4.45b)

(Kη)j = 0, ∀j ∈ As. (4.45c)

Proof. Using the empty biactive set assumption, we get that the cone C becomes the
following linear subspace C = {v ∈ Rn : (Kv)j = 0 if (Ku)j = 0}. Thus, the variational
inequality (4.43) becomes the following variational equation

⟨∇uuF(λ, u)η +∇uF(h, u), v − η⟩+
∑
j∈I

⟨Tj(Kη)j, (Kv)j − (Kη)j⟩ = 0, ∀v ∈ C. (4.46)

This guarantees that the solution operator’s directional derivative is a linear mapping
w.r.t the direction h. Since S is Bouligand differentiable, it implies its Fréchet differ-
entiability [74, Proposition 3.1.2]. Furthermore, (4.46) is the necessary and (due to
convexity) sufficient optimality condition of the following optimization problem

min
η ∈ C

1

2
⟨∇uuF(λ, u)η, η⟩+ ⟨∇uF(h, u), η⟩+

∑
j∈I

(
∥(Kη)j∥2

∥(Ku)j∥
−
⟨(Ku)j, (Kη)j⟩2

∥(Ku)j∥3

)
.

(4.47)
Since all constraints are linear, the Abadie constraint qualification condition [33, Defi-
nition 2.33] is satisfied. Then, there exist Lagrange multipliers νj ∈ R2, such that the
KKT-optimality conditions for (4.47) look as follows

⟨∇uuF(λ, u)η, v⟩+ ⟨∇uF(h, u), v⟩+
∑
j∈I

⟨Tj(Kη)j, (Kv)j⟩+
∑
j∈As

⟨νj, (Kv)j⟩ = 0, ∀v ∈ Rn

(Kη)j = 0,∀j ∈ As.
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Finally, by introducing ξ ∈ Rm×2 as

ξj =

νj, ∀j ∈ As,

Tj(Kη)j, ∀j ∈ I

the result is obtained.

4.2.3 Bouligand Subdifferential of the Solution Operator

Even though the Bouligand stationarity condition presented in Section 4.2 holds for any
local optimal solution, without requiring any constraint qualification, its purely primal
form is in general not amenable for algorithmic purposes. Indeed, this limitation is
related to the non-linearity of the directional derivative. As a remedy, in this section,
we will focus on studying the Bouligand subdifferential of the solution operator S.
Characterizing the linear elements of this subdifferential is helpful when devising a
numerical algorithm to solve the bilevel problem (4.1).

Thanks to the local Lipschitz continuity of S, shown in Theorem 4.2, and Rademacher’s
theorem, we know that the solution operator is differentiable almost everywhere. More-
over, we will denote the set of points where this function is differentiable as DS.

The following result characterizes the elements of the Bouligand subdifferential of
the solution operator.

Theorem 4.7. Let G ∈ ∂BS(λ) with λ > 0 and let us introduce the following subspace

V := {v ∈ Rn : (Kv)j = 0, ∀j ∈ As ∪ B1; (Kv)j ∈ span(qj),∀j ∈ B2}. (4.48)

Then, there exists a partition of the biactive set B = B1∪B2 such that, for any h ∈ Rn

such that λ+ th ≥ 0, Gh =: η̃ ∈ V is the unique solution of the system

⟨∇uuF(λ, u)η̃, v⟩+ ⟨∇uF(h, u), v⟩+
∑
j∈I

⟨ξ̃j, (Kv)j⟩ = 0, ∀v ∈ V (4.49a)

ξ̃j − Tj(Kη̃)j = 0, ∀j ∈ I. (4.49b)

Proof. To derive the characterization (4.49), we will make use of the local Lipschitz
continuity of the solution operator, as described in theorem 4.2. This property implies
that this map is almost everywhere differentiable. Therefore, let us consider a sequence
{λk} ⊂ DS such that λk → λ and S ′(λk) → G. Since we have that λ > 0, for a
sufficiently large k, it holds λk > 0. Using this result, along with the continuity of
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∇uF , the following limits hold true

uk = S(λk)→ S(λ) = u, (4.50a)

K⊤qk = −∇uF(λk, uk)→ −∇uF(λ, u) = K⊤q. (4.50b)

Now, each of this subsequence elements (uk, qk) define their respective inactive Ik :=

I(uk) and strongly active Ak
s := As(uk) sets. Moreover, from (4.50), we deduce the

existence of an N ∈ N such that

I ⊂ Ik and As ⊂ Ak
s ∀n ≥ N.

Then, by introducing the subspace V k := {v ∈ Rn : (Kv)j = 0,∀j ∈ Ak
s} and since

{λk} ⊂ DS. It then follows that, for h ∈ Rn, we have the directional derivative of the
solution operator in direction h, i.e., S ′(λk)h =: ηk ∈ V k satisfies the system (4.45), as
detailed below

∇uuF(λk, uk)ηk +∇uF(h, uk) +K⊤ξk = 0, (4.51a)

(ξk)j − (Tk)j(Kηk)j = 0, ∀j ∈ Ik, (4.51b)

(Kηk)j = 0, ∀j ∈ Ak
s , (4.51c)

or equivalently

⟨∇uuF(λk, uk)ηk, v⟩+⟨∇uF(h, uk), v⟩+
∑
j∈Ik

⟨(Tk)j(Kηk)j, (Kv)j⟩ = 0, ∀v ∈ V k. (4.52)

Now, to obtain (4.49) we have to apply the limit as k →∞ in (4.52). Even though from
the definition of the Bouligand subdifferential, it follows that η̃ = limk→∞ ηk, we need
to guarantee the boundedness of the sequence {ξk} for the limit to be well defined. In
this spirit, for j ∈ Ik, the sequence {(ξk)j} satisfies ∥(ξk)j∥ ≤ ∥(Tk)j∥2∥(Kηk)j∥, where
∥ · ∥2 is the matrix norm consistent with the Euclidean norm. Moreover, using the
definition for (Tk)j, we have

∥(ξk)j∥ ≤

∥∥∥∥∥ I

∥(Kuk)j∥
−

(Kuk)j(Kuk)⊤j
∥(Kuk)j∥3

∥∥∥∥∥
2

∥(Kηk)j∥,

=
∥(Kηk)j∥
∥(Kuk)j∥

∥∥∥∥∥I − (Kuk)j(Kuk)⊤j
(Kuk)⊤j (Kuk)j

∥∥∥∥∥
2

,

≤ ∥(Kηk)j∥
∥(Kuk)j∥

∥∥∥∥∥I − (Kuk)j(Kuk)⊤j
(Kuk)⊤j (Kuk)j

∥∥∥∥∥
F

Furthermore, for the given form of the matrix inside the Frobenius norm, we may
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bound this norm using [32, Lemma 11.15] and obtain the following bound

∥(ξk)j∥ ≤
3
√
2

4

∥(Kηk)j∥
∥(Kuk)j∥

, ∀k.

This result implies the boundedness of the sequence {(ξk)j}, then there exists a sub-
sequence that converges to a limit point ξ̃j. Likewise, for j ∈ Ak

s it holds (Kηk)j =

(Kuk)j = 0. Therefore, up to a subsequence, by passing to the limit, we get

ξ̃j − Tj(Kη̃)j = 0, ∀j ∈ I,
(Kη̃)j = 0, ∀j ∈ As.

Let us now consider a partition of the biactive set B = B1 ∪ B2, with

B1 := {j ∈ B : ∃{ukl} : (Kukl)j = 0,∀l} and B2 := B\B1.

In the index set B1 we know that (Kukl)j = 0, ∀l, i.e., the components are strongly
active. Consequently, from (4.51c), it follows that the subsequence (Kηkl)j = 0, for all
l. Since ηk → η̃, we get that

(Kη̃)j = 0, ∀j ∈ As ∪ B1.

Considering the partition B2, we approach a biactive point using a sequence of points
such that (Kukl)j ̸= 0, i.e., j ∈ Ik. Now, taking (ξk)j = (Tk)j(Kηk)j for j ∈ Ik we get

⟨(ξk)j, (Kηk)j⟩ =
1

∥(Kuk)j∥

(
∥(Kηk)j∥2 −

⟨(Kηk)j, (Kuk)j⟩2

∥(Kuk)j∥2

)
≥ 0, ∀j ∈ Ik. (4.53)

Using the positivity of the term ⟨(ξk)j, (Kηk)j⟩ we have

0 ≤ ⟨(ξk)j, (Kηk)j⟩ ≤
∑
j∈Ik

⟨(ξk)j, (Kηk)j⟩. (4.54)

Furthermore, using the semi-positive definiteness of∇uuF(λk, uk), we may upper bound
(4.52) for v = ηk, as follows∑

j∈Ik

⟨(ξk)j, (Kηk)j⟩ ≤ ⟨∇uuF(λk, uk)ηk, ηk⟩+
∑
j∈Ik

⟨(Tk)j(Kηk)j, (Kηk)j⟩,

= −⟨∇uF(h, uk), ηk⟩,
≤ ∥∇uF(h, uk)∥∥ηk∥. (4.55)
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Consequently, joining bounds (4.53)–(4.55), it reads

0 ≤ ⟨(ξk)j, (Kηk)j⟩ ≤ ⟨∇uuF(λk, uk)ηk, ηk⟩+
∑
j∈Ik

⟨(ξk)j, (Kv)j⟩ ≤ ∥∇uF(h, uk)∥∥ηk∥,

(4.56)
which, since ηk → η̃, as k → ∞, implies that ⟨(ξk)j, (Kηk)j⟩ is uniformly bounded.
Moreover, multiplying (4.56) with ∥(Kuk)j∥, it reads

0 ≤ ∥(Kuk)j∥⟨(Tk)j(Kηk)j, (Kηk)j⟩ ≤ ∥∇uF(h, uk)∥∥ηk∥∥(Kuk)j∥.

Replacing the form for the term (Tk)j and the property for (qk)j = (Kuk)j/∥(Kuk)j∥
for j ∈ Ik, we get

0 ≤ ∥(Kηk)∥2 − ⟨(qk)j, (Kηk)⟩2 ≤ ∥∇uF(h, uk)∥∥ηk∥∥(Kuk)j∥.

Since for j ∈ B2 we know (Kuk)j → 0, we get that the limit as k →∞ reads

∥(Kη̃)j∥2 − ⟨qj, (Kη̃)j⟩2 = lim
k→∞
∥(Kηk)j∥2 − ⟨(qk)j, (Kηk)j⟩2 = 0.

which implies that (Kη̃)j ∈ span(qj) for all j ∈ B2. Consequently, we have shown that
η̃ ∈ V .

Now, when taking the limit as k → ∞ in (4.52), there may exist sequences in Ik

that converge to a component in B2. Therefore, let us take a v ∈ V and find the limit
for the following term

lim
k→∞
⟨(Tk)j(Kηk)j, (Kv)j⟩ = lim

k→∞
⟨(Tk)j(Kηk)j, c(qk)j⟩,

= lim
k→∞

〈
(Tk)j(Kηk)j, c

(Kuk)j
∥(Kuk)j∥

〉
,

= c lim
k→∞

〈
(Kηk)j
∥(Kuk)j∥

,
(Kuk)j
∥(Kuk)j∥

〉

−

〈
⟨(Kηk)j, (Kuk)j⟩(Kuk)j

∥(Kuk)j∥3
,

(Kuk)j
∥(Kuk)j∥

〉
,

= c lim
k→∞

⟨(Kηk)j, (Kuk)j⟩
∥(Kuk)j∥2

−
⟨(Kηk)j, (Kuk)j⟩∥(Kuk)j∥2

∥(Kuk)j∥4
,

= 0.

Consequently, we may see that this product’s limit vanishes for sequences coming from
components either from As ∪B1, where (Kv)j = 0, and from B2 as k →∞. Therefore,
taking the limit as k →∞ in (4.52), yields the result.
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Corollary 4.1. Let G ∈ ∂BS(λ). There exists a partition of the biactive set B =

B1 ∪ B2 and a multiplier θ ∈ Rm such that, for any h such that λ+ th ≥ 0, η̃ := Gh is
the unique solution of the system

∇uuF(λ, u)η̃ +∇uF(h, u) +K⊤θ = 0 (4.57a)

θj − Tj(Kη̃)j = 0, ∀j ∈ I, (4.57b)

⟨θj, qj⟩ = 0, ∀j ∈ B2. (4.57c)

Proof. Let us consider the functional M ∈ Rn defined by

(M, v) := (∇uuF(λ, u)η̃, v) + (∇uF(h, u), v) +
∑
j∈I

⟨Tj(Kη̃)j, (Kv)j⟩, ∀v ∈ V.

(4.49a) can then be written as M ∈ V ⊥, where V ⊥ is the orthogonal complement of
the set V defined in (4.48). Thanks to the structure of the linear subspace V , it can
be represented in a separate way as V =

(⋂
j∈As∪B1

V 1
j

)
∩
(⋂

j∈B2
V 2
j

)
, where

V 1
j := {v ∈ Rn : (Kv)j = 0}, j ∈ As ∪ B1,
V 2
j := {v ∈ Rn : (Kv)j ∈ span(qj)}, j ∈ B2.

Consequently, using the properties of the orthogonal complement described in Theo-
rem 2.3, we know V ⊥ =

∑
j∈As∪B1

(V 1
j )

⊥
+
∑

j∈B2
(V 2

j )
⊥.

For j ∈ As ∪ B1, we get that (V 1
j )

⊥
= ker (Kj)

⊥. Thanks to the orthogonality
relations, see Theorem 2.4, it follows that ker (Kj)

⊥ = range(K⊤
j ). Hence, for any

ξj ∈ (V 1
j )

⊥, there exist πj such that ξj = K⊤
j πj. Consequently,∑

j∈As∪B1

(V 1
j )

⊥
=

∑
j∈As∪B1

K⊤
j πj, πj ∈ R2.

For j ∈ B2, any v ∈ V 2
j can be represented as a sum between an element from the

nullspace and an element from the row space of Kj (Theorem 2.2) as follows

v = ϕ+ φ, with (Kjφ) = 0 and ϕ ∈ range(K⊤
j ).

Since (Kv)j ∈ span(qj) and (Kjφ) = 0, it follows that (Kv)j ∈ span(qj) as well.
Let us now consider wj ∈ (V 2

j )
⊥, which can be represented as wj = w̃j + ŵj, where

w̃j ∈ range(K⊤
j ) and ŵj ∈ range(K⊤

j )
⊥
= ker(Kj). Consequently, there exists ψj such

that
wj = K⊤

j ψj + ŵj, with Kjŵj = 0.

66



Taking the scalar product with vj ∈ V 2
j , we get

(wj, vj) = (K⊤
j ψj + ŵj, ϕ+ φ) = ⟨ψj,Kjϕ⟩+ (ŵj,K⊤

j ψ) + (ŵj, φ) = c⟨ψj, qj⟩+ (ŵj, φ),

since Kjφ = Kjŵj = 0. For the product to be zero, it is then required that (ŵj, φ) =

0, ∀φ ∈ ker(Kj) and ⟨ψj, qj⟩ = 0. Since ŵj belongs to ker(Kj) as well, it follows that
ŵj = 0. Consequently,∑

j∈B2

(V 2
j )

⊥
=
∑
j∈B2

K⊤
j ψj, ψj ∈ R2 : ⟨ψj, qj⟩ = 0.

Altogether, we then obtain that there exist multipliers πj and ψj such that

M +
∑

j∈As∪B1

K⊤
j πj +

∑
j∈B2

K⊤
j ψj = 0,

with ⟨ψj, qj⟩ = 0. Defining

θj :=


Tj(Kη̃)j, j ∈ I,

πj, j ∈ As ∪ B1,

ψj, j ∈ B2,

the result is obtained.

Next, we verify that along a given direction, there exists a solution of system (4.49)
which coincides with the directional derivative. When properly characterized, we can
use a linear representative of the (otherwise nonlinear) directional derivative within a
solution algorithm.

Theorem 4.8. For any λ ∈ Rn
+ and h ∈ Rn such that λ + th ≥ 0, there exists a

linearized element η̃ = Gh such that S ′(λ;h) = Gh.

Proof. Let us recall that the directional derivative of the solution mapping, in direction
h, is given by the unique solution of the following variational inequality of the first kind

⟨∇uuF(λ, u)η +∇uF(h, u), v − η⟩+
∑
j∈I

⟨Tj(Kη)j, (Kv)j − (Kη)j⟩ ≥ 0, ∀v ∈ C. (4.58)

Considering the sets B1 := {j ∈ B : (Kη)j = 0} and B2 := B\B1, and since η ∈ C, it
also follows (Kη)j = cqj for all j ∈ B2, for some c > 0. Consequently, η belongs to the
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subspace

V := {v ∈ Rn : (Kv)j = 0, ∀j ∈ As ∪ B1; (Kv)j ∈ span(qj), ∀j ∈ B2}.

Moreover, for any w ∈ V and t sufficiently small, we have η ± tw ∈ C. Testing (4.58)
with these vectors and using the linearity of K, we get

⟨∇uuF(λ, u)η +∇uF(h, u), η + tw⟩+
∑
j∈I

⟨Tj(Kη)j, (Kη)j + t(Kw)j⟩ = 0,

⟨∇uuF(λ, u)η +∇uF(h, u), tw − η⟩+
∑
j∈I

⟨Tj(Kη)j, t(Kw)j − (Kη)j⟩ = 0.

Adding both equations, yields

⟨∇uuF(λ, u)η +∇uF(h, u), w⟩+
∑
j∈I

⟨Tj(Kη)j, (Kw)j⟩ = 0, ∀w ∈ V.

Indeed, the directional derivative takes the form η = Gh solution of (4.49), with B2 as
defined above.

4.3 Nonsmooth Trust Region Algorithm

In this section, we will use the characterization of the linear elements of the Bouligand
subdifferential to find optimal denoising parameters for the data learning model (4.1).
The directional derivative of the reduced cost problem can be written as

⟨j′(λ), h⟩ = ⟨∇J(u), S ′(λ;h)⟩ = ⟨∇J(u), η̃⟩, (4.59)

where η̃ is the solution of (4.57) for a particular partition of the biactive set B = B1∪B2
and S ′(λ;h) is the directional derivative of the solution operator at λ in direction h.

By defining a generalized adjoint p ∈ Rn as the solution of the following system

⟨∇uuF(λ, u)⊤p, v⟩+
∑
j∈I

⟨µj, (Kv)j⟩ − ⟨∇J(u), v⟩ = 0, ∀v ∈ V

µj − Tj(Kp)j = 0, ∀j ∈ I,

where V is defined as in Theorem 4.7. Thanks to Theorem 4.8 we know that η̃ ∈ V is a
linear representative of the directional derivative of the solution operator. Consequently
(4.59) reads

⟨j′(λ), h⟩ = ⟨∇J(u), η̃⟩ = ⟨∇uuF(λ, u)p, η̃⟩+
∑
j∈I

⟨Tj(Kp)j, (Kη̃)j⟩.
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Using the symmetry of Tj and (4.49a) it yields

⟨j′(λ), h⟩ = ⟨∇uuF(λ, u)⊤p, η̃⟩+
∑
j∈I

⟨(Kp)j, Tj(Kη̃)j⟩,

= ⟨∇uuF(λ, u)⊤p, η̃⟩+
∑
j∈I

⟨(Kp)j, ξ̃j⟩,

which gives us the following characterization for the directional derivative

⟨j′(λ), h⟩ = ⟨g, h⟩ = −⟨∇uF(h, u), p⟩. (4.60)

With (4.60) it is now possible to define a trust region algorithm, see Section 2.7, for
solving the bilevel problem.

We will use the nonsmooth trust-region method described in Section 2.7. Recalling
this method is built using two switching models, see Algorithm 4.1, the implementation
will consider two models as well. A first model will consider the linear representative
of the Bouligand subdifferential described in Theorem 4.7 for a particular partition of
the biactive set B = B1 ∪ B2 and its associated generalized adjoint state as well as its
reduced cost directional derivative representative (4.60), yielding the following model

mk(λk + dk) = j(λk)− ⟨∇uF(dk, uk), pk⟩+
1

2
⟨dk, Bkdk⟩,

where Bk is a BFGS second-order approximation of the Hessian matrix.

Furthermore, when the trust region radius falls below a threshold radius ∆t, the
algorithm switches to a model built using a regularized version of the problem as
described in Section 3.5. In particular, considering the KKT optimality system for the
smooth bilevel problem (3.18) with αj = 1. Then, we may obtain a regularized adjoint
pγ ∈ Rn as the solution of the following system

∇uJ(u) +∇uuF(λ, u)⊤pγ +K⊤β = 0,

βj − h′′γ((Ku)j)⊤(Kpγ)j = 0, ∀j = 1, . . . ,m.

Using the obtained solution pγ, we know the gradient of the reduced cost function
corresponds to

⟨j′(λ), h⟩ = ⟨gγ, h⟩ = −⟨∇uλF(λ, u)⊤pγ, h⟩, (4.61)

With this result, we can now build a regularized model for the trust-region algorithm

mk(λk + dk) = j(λk)− ⟨∇uλF(λk, uk)⊤pγk , dk⟩+
1

2
⟨dk, Bkdk⟩.

A complete description of the trust-region algorithm used for data parameter learning
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is depicted in Algorithm 4.1.

Algorithm 4.1 Non-smooth Trust-Region for Learning the Data Fidelity Weight
1: Choose initial parameter λ0, radius ∆0, 0 < η1 ≤ η2 < 1, 0 < γ1 ≤ 1 ≤ γ2 and
tol > 0

2: Choose initial second order matrix B0 and a threshold radius ∆t

3: Compute j(λ0) and set k = 0.
4: while ∆k > tol do
5: if ∆k >= ∆t then
6: Compute a linear element of the Bouligand subdifferential gk at λk as the

solution of (4.60) for a particular partition of the biactive set B = B1 ∪ B2.
7: Build the model function as: mk(λk + dk) = j(λk) + g⊤k dk +

1
2
d⊤k Bkdk.

8: else
9: Compute a regularized gradient gγ,k at λk using (4.61).

10: Build the model function as: mk(λk + dk) = j(λk) + g⊤γ,kdk +
1
2
d⊤k Bkdk.

11: end if
12: Compute a step sk that “sufficiently” reduces the model mk such that λk + sk ∈

B∆k

13: Update second order matrix Bk using limited memory BFGS.
14: Calculate the predicted and actual reduction

predk = mk(λk)−mk(λk + sk),

aredk = j(λk)− j(λk + sk).

15: Compute the quality measure ρk = aredk/predk.

16: λk+1 =

{
λk if ρk ≤ η1,

λk + sk otherwise.

17: ∆k+1 =


γ2∆k if ρk ≥ η2,

∆k if ρk ∈ (η1, η2),

γ1∆k if ρk < η1.
18: k ← k + 1
19: end while
20: return λk

4.4 Numerical Experiments

In this section, we will describe the algorithm’s performance described in Section 4.3
to obtain optimal patch parameters for the variational image denoising problem. This
problem is built with an upper-level loss corresponding to the following quadratic
function

J(u, ū) :=
1

N

N∑
k=1

∥uk − utrue
k ∥2,
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and for the lower level problem, we will consider the patch parameter total variation
denoising

uk = argmin
u

n∑
j=1

Q(λ)j(uj − (fk)j)
2 +

m∑
j=1

∥(Ku)j∥,

where (fk, ūk) is a given training dataset, λ ∈ Rp
+ with p << n and Q : Rp → Rn

+ is a
linear patch operator defined as

Q(λ) := λ√p×√
p ⊗ I√

n√
p
×

√
n√
p

∈ R
√
n×

√
n,

here, ⊗ is the Kronecker product, λ√p×√
p is a matrix built by reordering the elements

of λ into a matrix of size √p × √p, and I√
n√
p
×

√
n√
p

is a matrix of ones of size
√
n√
p
×

√
n√
p
.

This product outputs a matrix of size
√
n ×
√
n that is reshaped into a vector of n

components.

The trust-region algorithm used for solving this problem along with the lower level
solvers used for the denoising problem were coded in Python making use of the libraries:
numpy, scipy, pillow, pylops and pyprox. The source code and instructions for
repeating the computations are provided in [83].

We divided the experiments of this bilevel learning problem into several parts.
First, we will explore the optimal denoising results on the Cameraman training pair to
verify the results in a generic natural image for both scalar and patch-dependent denoise
models. Furthermore, we continue with a patch behavior exploration using a test image
with a noise contaminating specific patches of the picture. After, we will finish this
exploration with an application with a larger dataset; indeed, in Section 4.4.3 we will
use our bilevel learning strategy to obtain optimal denoising patch-based parameters
for a subset of the CelebA Faces dataset [50].

As a final comment on the implementation of the algorithm parameters, we consider
a threshold radius ∆t = 1×10−4, the smoothing parameter on the regularized gradient
γ = 1 × 10−10. Finally, regarding the initialization procedure, we rely on a warm-
start method. This strategy involves solving the bilevel problem for a parameter with
increasing patches and using the previous solution with the smaller patch size to set
the initial parameter.

4.4.1 Cameraman Training Pair

Here, we analyze the algorithm’s behavior with a single training pair based on the
cameraman test image of size 128× 128 pixels. This training pair was built by adding
Gaussian noise with zero mean and standard deviation σ = 0.05 to the ground-truth
image. When considering a scalar and a two-dimensional parameter space, Figure 4.3
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Original SSIM=0.7494
PSNR=23.1698

λ∗ = 64.36
SSIM=0.8426
PSNR=23.8045

λ1

λ2

λ∗ = [46.3617; 90.8444]
SSIM=0.8537
PSNR=23.8322

Figure 4.3: Optimal reconstructions of the cameraman training pair using a scalar
regularization parameter and a 2 dimensional regularization parameter.
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Figure 4.4: Values for the l2 squared cost function using a scalar regularization pa-
rameter and a two dimensional regularization parameter using the Cameraman training
pair.

shows this training image pair along with the optimal denoised images computed using
the trust-region algorithm. An improvement on the SSIM quality metric can be veri-
fied when using a two-dimensional parameter compared to a scalar parameter optimal
denoising. Furthermore, we plot the reduced cost function in Figure 4.4 for the scalar
and two-dimensional parameter cases. As presented in the figure, the non-convexity of
said function can be inferred.

The non-convexity of the reduced cost function leads to several limitations in our
choice for the initial parameter considered by the algorithm. Indeed, Table 4.1 shows
the obtained solution for the scalar case for different initialization values λ0. The
figure shows that the algorithm can find the optimal value within a region with good
enough curvature information. Nevertheless, it is not the case for high values on the
initial parameter value (λ0 = 80). At this parameter value, the gradient of the reduced
cost function satisfies the stopping criteria, and consequently, the algorithm stops its
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Reconstruction

λ0 nit nfev ngev nreggev COST PSNR SSIM

10 15 17 17 0 34.114227 23.804544 0.842666
20 14 16 15 1 34.114202 23.804547 0.842691
30 15 17 16 1 34.114088 23.804562 0.842909
40 11 13 12 1 34.114125 23.804557 0.842792
50 16 18 18 0 34.114088 23.804562 0.842923

Table 4.1: Changes on the initial parameter λ0 regularization parameter for the
cameraman training pair.

Reconstruction

patch nit nfev ngev nreggev COST PSNR SSIM

1× 1 13 15 14 1 34.114243 23.804542 0.842652
2× 2 40 42 41 1 33.673749 23.860985 0.854657
4× 4 43 45 45 0 33.017201 23.946497 0.859556
8× 8 37 39 39 0 32.236732 24.050389 0.868040
16× 16 30 32 32 0 31.175826 24.195720 0.869611
32× 32 32 34 34 0 29.294562 24.466029 0.873243

Table 4.2: Trust Region Algorithm behavior on the cameraman training pair.

execution even though it is not a stationary point.

Regarding the performance of the algorithm in this dataset, Table 4.2 shows a
summary of the number of iterations, number of function evaluations (nfev), number of
gradient evaluations (ngev), and number of regularized gradient evaluations (nreggev).
Indeed, we can see an improvement in the quality of the reconstruction obtained using
the l2, SSIM, and PSNR metrics; it implies that an increasing number of patches used
in the parameter leads to a better reconstruction.

4.4.2 Circles Training Pair

This next experiment will explore the patch mechanism and its spatial adaptation.
For this purpose, we built a synthetic dataset where four patches of noise with zero
mean and variance of 0.1, see Figure 4.6. In this training pair, when using the trust-
region algorithm for an increasing number of patches in the parameter λ, we see an
increase in the reconstruction quality according to the l2, PSNR, and SSIM metrics
as detailed in Table 4.3. Furthermore, Figure 4.7 shows the spatial adaptation of the
patches. Recalling that dark values in the figure corresponds to zones where the data
term has less influence on the final solution, we see that it correlates with the original
distribution of the noise in the test image.
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Figure 4.5: Learned optimal patch parameter for an increasing number of patches for
the cameraman training pair.
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PSNR=16.3239 SSIM=0.7671 PSNR=20.2745 SSIM=0.7639

Figure 4.6: Optimal Scalar Parameter Circles Training Pair

Reconstruction

patch nit nfev ngev nreggev COST PSNR SSIM

1× 1 12 14 13 1 76.902703 20.274483 0.763919
2× 2 202 204 204 0 69.025173 20.743824 0.860534
4× 4 14 16 15 1 47.882484 22.332133 0.856216
8× 8 14 16 15 1 42.264715 22.874120 0.853280
16× 16 19 21 21 0 34.827006 23.714738 0.844906
32× 32 42 44 44 0 20.107619 26.100293 0.867166

Table 4.3: Trust Region Algorithm behavior on the circles training pair.

4.4.3 Multiple Training Pairs

For the second experiment, we used ten image pairs containing images of faces to gen-
erate a training dataset and ten different image pairs to generate a validation dataset;
both datasets were based on the CelebA dataset [50]. Said images are of size 128 by
128 pixels, and in both datasets, we obtained the degenerated pairs by adding Gaus-
sian noise with zero-mean and standard deviation σ = 0.1. A subset of the training
dataset is depicted in Figure 4.8. In Figure 4.9, we plot the reduced cost functions
corresponding to a scalar parameter and two-dimensional patch parameter, along with
the optimal value calculated by the algorithm. Again, we can confirm experimentally
that the optimal value was calculated.

According to the results presented in Figure 4.10, the learned parameter does not
adjust to a particular image. Still, it changes according to the training set data. Fur-
thermore, for the training set, Table 4.4 shows an improvement in the averaged quality
of the obtained images as more patches are considered in the parameter. Moreover,
the number of iterations used to get said solution is detailed, along with the number
of function, gradient, and regularized gradient evaluations.

Finally, regarding the generalization capabilities of the learned parameter, we may
see a degradation in the averaged quality of the reconstruction images in Table 4.5.
This effect may indicate overfitting of the parameter when it uses a high number of
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Figure 4.7: Learned optimal parameters for an increasing patch number on the circles
training pair.
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PSNR=20.5848 SSIM=0.6495 PSNR=20.1740 SSIM=0.5496 PSNR=20.1359 SSIM=0.5410 PSNR=20.5296 SSIM=0.6364 PSNR=20.1997 SSIM=0.5779

PSNR=25.8990 SSIM=0.8694 PSNR=27.6005 SSIM=0.8970 PSNR=27.6156 SSIM=0.8803 PSNR=26.3258 SSIM=0.8933 PSNR=26.4588 SSIM=0.8992

PSNR=20.3755 SSIM=0.5623 PSNR=20.2060 SSIM=0.6245 PSNR=19.4840 SSIM=0.5328 PSNR=20.6107 SSIM=0.5380 PSNR=20.5312 SSIM=0.5557

PSNR=26.7140 SSIM=0.8661 PSNR=26.2052 SSIM=0.8814 PSNR=25.1133 SSIM=0.8684 PSNR=28.0650 SSIM=0.8979 PSNR=26.5811 SSIM=0.8950

Figure 4.8: A subset of the CelebA dataset corrupted with Gaussian noise.
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Figure 4.9: Values for the l2 squared cost function using a scalar regularization
parameter and a two dimensional regularization parameter using the faces dataset.
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Figure 4.10: Values for the optimal parameters calculated for different parameter
patch sizes on the faces dataset.

Reconstruction

patch nit nfev ngev nreggev COST MPSNR MSSIM

1× 1 7 9 8 1 18.020032 26.657829 0.884794
2× 2 9 11 11 0 18.019781 26.657994 0.884803
4× 4 9 11 11 0 18.001191 26.663121 0.884901
8× 8 9 11 11 0 17.881697 26.695693 0.886269
16× 16 14 16 15 1 17.716941 26.735823 0.887308
32× 32 69 71 70 1 17.435898 26.804171 0.888396

Table 4.4: Trust Region Algorithm behavior on the Faces dataset.
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num noisy scalar 2× 2 4× 4 8× 8 16× 16 32× 32

1 0.6524 0.8748 0.8754 0.8752 0.8749 0.8745 0.8718
2 0.5840 0.7656 0.7681 0.7675 0.7654 0.7640 0.7579
3 0.5623 0.8668 0.8669 0.8668 0.8670 0.8667 0.8623
4 0.5350 0.8204 0.8207 0.8206 0.8205 0.8203 0.8160
5 0.5979 0.8737 0.8735 0.8735 0.8732 0.8728 0.8694
6 0.5807 0.8439 0.8444 0.8443 0.8443 0.8445 0.8427
7 0.5640 0.7460 0.7484 0.7478 0.7459 0.7444 0.7385
8 0.5631 0.8467 0.8470 0.8471 0.8473 0.8471 0.8441
9 0.5910 0.8354 0.8371 0.8365 0.8342 0.8316 0.8205
10 0.6622 0.8753 0.8765 0.8761 0.8749 0.8737 0.8696

MSSIM 0.5892 0.8348 0.8358 0.8355 0.8348 0.8340 0.8293

Table 4.5: Faces Dataset SSIM Quality Measures in the validation dataset.

patches. Consequently, according to this validation dataset, a 2× 2 patch has the best
generalization properties.
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Chapter 5

Optimal Learning of the
Regularization Weight

This section will focus on finding the optimal parameters for the lower level problem
shown in (3.9) where we are only considering the parameter affecting the regularization
term α ∈ Rm

+ . With this goal in mind, we will rely on a bilevel parameter learning
strategy where we make use of a training dataset of P pairs (utrue

k , fk), for k = 1, . . . , P ,
where each utrue

k corresponds to ground-truth data and fk to the corresponding cor-
rupted one, the optimization problem now reads

min
α ∈ Rn

+

P∑
k=1

J(uk(α), u
true
k ) (5.1a)

s.t. uk(α) = argmin
u∈Rn

{
F(u; fk) +

m∑
j=1

αj∥(Ku)j∥,

}
(5.1b)

where K : Rn → Rm×2 is a finite differences discretization of the gradient operator.
Furthermore, we will analyze the single training pair case since the multiple training
pairs case is a natural extension. Moreover, for readability purposes, we will omit the
dependence of corrupted data fk in the data fidelity term.

Existence of optimal solutions for the bilevel problem (5.1) has been previously
investigated in [48] for the scalar parameter case. If the data (noisy image, ground
truth), the fidelity term, and the loss function fulfill certain conditions, no box con-
straints are required to prove the existence of optimal scalar and scale-dependent pa-
rameters (see [48, Proposition 4.1]). The proof can be easily extended to the case of
spatially-dependent parameters using similar arguments.

Now we can replace the lower level optimization problem in (5.1) by its necessary
and sufficient condition, leading to the following optimization problem with variational
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inequality constraints

min
α ∈ Rn

+

J(u(α), utrue) (5.2a)

s.t. ⟨∇F(u), v − u⟩+
m∑
j=1

αj∥(Kv)j∥ −
m∑
j=1

αj∥(Ku)j∥ ≥ 0, ∀v ∈ Rn (5.2b)

Using duality techniques [28], we know that there exists a dual variable q ∈ Rm×2

with qj ∈ ∂(αj∥(Ku)j∥), such that the variational inequality of the second kind (5.2b)
can be equivalently written in primal-dual form, yielding the following reformulation

∇F(u) +K⊤q = 0 (5.3a)

⟨qj, (Ku)j⟩ − αj∥(Ku)j∥ = 0, ∀j = 1, . . . ,m (5.3b)

∥qj∥ − αj ≤ 0, ∀j = 1, . . . ,m. (5.3c)

Consequently, the bilevel parameter learning problem for a single training pair can
be written as:

min
α∈Rm

J(u, ū) (5.4a)

s.t. ∇F(u) +K⊤q = 0, (5.4b)

⟨qj, (Ku)j⟩ − αj∥(Ku)j∥ = 0, ∀j = 1, . . . ,m, (5.4c)

∥qj∥ − αj ≤ 0, ∀j = 1, . . . ,m, (5.4d)

αj ≥ 0, ∀j = 1, . . . ,m. (5.4e)

For clarity in the exposition, we restrict the analysis to the case of a single training
pair. The results are, however, easily extendable to larger training sets.

5.1 Mordukhovich Stationarity

This section will address the primal-dual stationarity conditions for the bilevel prob-
lem (5.1). Then, motivated by the constraint qualification condition presented in
Section 2.5, we can reformulate the lower level optimization problem in (5.1b) as a
generalized equation. Then, by verifying the constraint qualification condition for gen-
eralized mathematical problems with equilibrium constraints (GMPEC) presented in
Theorem 2.9, we can guarantee the existence of Lagrange multipliers and a correspond-
ing stationarity system.

Indeed, by introducing a dual variable q ∈ Rm×2, where qj ∈ ∂(αj∥(Ku)j∥), we may
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write the lower level problem equivalently as follows

0 ∈ ∇F(u) +Q(α, u), (5.5)

where Q : Rm
+ ×Rn ⇒ Rn is the set-valued operator associated with the subdifferential

of the Euclidean norm, i.e.,

Q(α, u) :=
K⊤q, with q ∈ Rm×2 :

qj = αj
(Ku)j

∥(Ku)j∥
, if ∥(Ku)j∥ ≠ 0,

∥qj∥ ≤ αj, if ∥(Ku)j∥ = 0,
, if αj ≥ 0

∅, if αj < 0

 . (5.6)

Let us note that the reformulation (5.5) is a particular case of the first constraint in
(2.10), if F1(α, u) = ∇F(u), F2(α, u) = (α, u), and ω ∈ Rm

+ ×Rn are chosen. Addition-
ally, the characterization (5.6) is obtained by first considering the case ∥(Ku)j∥ ≠ 0,
where, in order to fulfill (5.3b), the relation qj = αj(Ku)j/∥(Ku)j∥ must hold. Other-
wise, if ∥(Ku)j∥ = 0, the inequality (5.3c) holds. Equivalently, by using the definition
of the graph of the multifunction Q, we may rewrite (5.5) as

∇F(u) +K⊤q = 0, (5.7a)

(α, u,K⊤q) ∈ gph Q, (5.7b)

(α, u) ∈ Rm
+ × Rn, (5.7c)

where gphQ := {(α, u,K⊤q) ∈ Rm
+ ×Rn×Rn : K⊤q ∈ Q(α, u)}. Since, for each α ≥ 0,

Q corresponds to the convex subdifferential of the multi-parameter extension of the
total variation seminorm, the mapping (α, u) 7→ Q(α, u) is closed, as well as its graph
[69, Theorem 24.4].

The constraint qualification condition presented in [59] guarantees the existence of
multipliers that allow the derivation of a stationarity system. Unlike the case presented
when learning the data fidelity term, the multivalued function Q now depends on α

and u. Consequently, we cannot use the Robinson regularity property as a guarantee
for the existence of KKT multipliers as previously done in [42]. An alternative for
accomplishing this goal is to prove the constraint qualification condition [59] presented
in Section 2.6.

Using the structure of the set-valued operator Q presented in (5.6), let us intro-
duce the following notation for the inactive, strongly active, biactive, zero-inactive and
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triactive sets respectively:

I(α, u) := {j ∈ {1, . . . ,m} : (Ku)j ̸= 0, αj > 0},
As(α, u) := {j ∈ {1, . . . ,m} : ∥qj∥ < αj, αj > 0},
B(α, u) := {j ∈ {1, . . . ,m} : ∥qj∥ = αj, (Ku)j = 0, αj > 0},
I0(α, u) := {j ∈ {1, . . . ,m} : (Ku)j ̸= 0, αj = 0},
T (α, u) := {j ∈ {1, . . . ,m} : ∥qj∥ = αj, (Ku)j = 0, αj = 0},

We will hereafter omit the arguments in the set notation whenever they can be
inferred from the context. Let us note that the condition in the strongly active set As

implies a strict positive parameter αj > 0 for this index set.

In Figure 5.1, we present a geometric representation of these index sets. Particularly,
for j ∈ I ∪ B, we see that the norm of the dual variable must hold ∥qj∥ = αj, which
corresponds to the cone described in Figure 5.1a. When j ∈ As the dual variable q will
exists only in the interior of the cone, see Figure 5.1b. For the case j ∈ I0, the dual
variable must be in the plane αj = 0. Finally, the triactive set depicted in Figure 5.1d
contains a single element corresponding to the case where both (Ku)j = 0 and αj = 0.

In the following lemmata, we obtain the Bouligand tangent cone, the Fréchet normal
cone, and the Mordukhovich normal cone to the graph of the multifunction Q.

Lemma 5.1. The Bouligand tangent cone to the graph of Q, described in (5.7), is given
by

TgphQ(α, u,K⊤q) =

(δα, δu,K⊤δq) :



(δq)j − (δα)j
(Ku)j
∥(Ku)j∥

− αjTj(Kδu)j = 0, if j ∈ I,

(Kδu)j = 0, if j ∈ As,

(Kδu)j = 0, ⟨(δq)j, qj⟩ ≤ αj(δα)j ∨

(Kδu)j = c̃qj(c̃ ≥ 0), ⟨(δq)j, qj⟩ = αj(δα)j

}
if j ∈ B,

(δq)j − (δα)j
(Ku)j
∥(Ku)j∥

= 0, (δα)j ≥ 0 if j ∈ I0,

(δα)j ≥ 0, (Kδu)j ∈ R2\{0}, (δq)j − (δα)j
(Kδu)j
∥(Kδu)j∥

= 0 ∨

(δα)j ≥ 0, (Kδu)j = 0, ∥(δq)j∥ − (δα)j ≤ 0

 if j ∈ T ,


(5.8)
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q1j

q2j

αj

(a) j ∈ I(α, u) ∪ B(α, u)

q1j

q2j

αj

(b) j ∈ As(α, u)

q1j

q2j

αj

(c) j ∈ I0(α, u)

q1j

q2j

αj

(d) j ∈ T (α, u)

Figure 5.1: Geometric interpretation of the primal-dual system for different index
sets.
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where

Tj(Kv)j =
(Kv)j
∥(Ku)j∥

−
(Ku)j(Ku)

⊤
j (Kv)j

∥(Ku)j∥3
, for v ∈ Rn.

Proof. The tangent cone to the graph of the multifunction Q, see Definition 2.6, is
defined as

TgphQ(α, u,K⊤q) = {(δα, δu,K⊤δq) ∈ Rn×Rn×Rn : ∃tk → 0, (αk, uk,K⊤qk) ∈ gphQ :

1

tk
((αk, uk,K⊤qk)− (α, u,K⊤q))→ (δα, δu,K⊤δq)}. (5.9)

Let us note that in this definition, we take sequences of elements of gphQ, and
because of the closeness of gphQ, this limit belongs to the graph as well. Conse-
quently, the limiting elements are of the form (δα, δu,K⊤δq). Taking (δα, δu,K⊤δq) ∈
TgphQ(α, u,K⊤q), then by definition of the tangent cone, see (5.9), there exist a se-
quence {(αk, uk,K⊤qk)} ⊂ gphQ and a sequence tk → 0. Moreover, for a particular
k we know that (αk, uk,K⊤qk) ∈ gphQ if and only if (qk)j ∈ ∂((αk)j∥(Kuk)j∥) for all
j = 1, . . . ,m. This remark allows us to split the analysis into different cases according
to the definition of the multifunction Q.

Case 1: j ∈ I(α,u). In this index set, the dual variable can be uniquely character-
ized. According to (5.6), the graph of the set-valued map corresponds to the
following differentiable manifold:

hj(α, u,K⊤q) := qj − αj

(Ku)j
∥(Ku)j∥

= 0. (5.10)

Using Lyusternik’s theorem [43, Theorem 4.21], the j−th component of the tan-
gent direction, ((δα)j, (Kδu)j, (δq)j), then satisfies

(δq)j − (δα)j
(Ku)j
∥(Ku)j∥

− αjTj(Kδu)j = 0.

Case 2: j ∈ As(α,u). In this index set we know ∥qj∥ < αj. Therefore, a component
in this index set can only be approximated by taking sequences of strongly active
components. For n sufficiently large we then take sequences such that (Kuk)j = 0,
∥(qk)j∥ < (αk)j. Taking the limit in (Kuk)j = 0, as k → ∞, yields (Kδu)j = 0.
For the dual variable, let us take the sequence (qk)j = qj + tkd with arbitrary
d ∈ R2. It then follows that

(δq)j = lim
k→∞

(qk)j − qj
tk

= d.
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Since we took an arbitrary direction d it yields (δq)j ∈ R2. Similarly, we get that
(δα)j ∈ R, as αj > 0.

Case 3: j ∈ B(α,u). There are three possible approximations to a component in
this index set either via inactive, strongly active, or biactive sequences. Since
αj > 0 in all these three cases, we can approximate it by sequences (αk)j < αj

or (αk)j > αj. Consequently, we get (δα)j ∈ R.

Now, if we approach a biactive point using a sequence in the inactive set, this
sequence satisfies (Kuk)j ̸= 0. Then the sequence of dual variables has the
following form

(qk)j = (αk)j
(Kuk)j
∥(Kuk)j∥

. (5.11)

Furthermore, considering the following product

⟨(qk)j, (Kuk)j⟩ =

〈
(αk)j

(Kuk)j
∥(Kuk)j∥

, (Kuk)j

〉
= (αk)j∥(Kuk)j∥, (5.12)

dividing by tk in both sides and taking the limit as k →∞, we get ⟨qj, (Kδu)j⟩ =
αj∥(Kδu)j∥. Recalling that in this index set ∥qj∥ = αj > 0, we know both vectors
are collinear, i.e.,

(Kδu)j = c̃qj, for some c̃ ≥ 0. (5.13)

Using that ∥qj∥ = αj, the following holds〈
(qk)j − qj

tk
, qj

〉
=

1

tk
(⟨(qk)j, qj⟩ − ⟨qj, qj⟩)

=
1

tk
(⟨(qk)j, qj⟩ − ⟨(qk)j, (qk)j⟩+ ⟨(qk)j, (qk)j⟩ − α

2
j ),

= −
〈
(qk)j − qj

tk
, (qk)j

〉
+

(αk)
2
j − α2

j

tk
,

where we used the property ∥(qk)j∥ = (αk)j. Now, rearranging the terms in the
last equation, we get〈

(qk)j − qj
tk

, qj

〉
+

〈
(qk)j − qj

tk
, (qk)j

〉
=

(αk)
2
j − α2

j

tk
.

Consequently, taking the limit as k →∞, the following equation holds true

2⟨(δq)j, qj⟩ = 2αj(δα)j,

and consequently we get ⟨(δq)j, qj⟩ = αj(δα)j.

Now, if the approximation is done through a sequence of strongly active compo-
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nents, we know the sequence satisfies (Kuk)j = 0 and ∥(qk)j∥ < (αk)j. In this
case, we know (Kδu)j = 0 and, using the Cauchy-Schwarz inequality, we get〈

(qk)j − qj
tk

, qj

〉
≤ αj

tk
(∥(qk)j∥ − ∥qj∥) < αj

(
(αk)j − αj

tk

)
,

which implies that ⟨(δq)j, qj⟩ ≤ αj(δα)j.

Finally, approximating through a biactive set sequence, we know again (Kδu)j = 0

and, estimating the product〈
(qk)j − qj

tk
, qj

〉
≤ αj

tk
(∥(qk)j∥ − ∥qj∥) = αj

(
(αk)j − αj

tk

)
,

taking the limit as k →∞, we get

⟨(δq)j, qj⟩ ≤ αj(δα)j. (5.14)

Case 4: j ∈ I0(α,u). We can approximate a component in the zero-inactive set by
sequences in the zero-inactive set and the inactive set. Therefore, considering
an sequence in the inactive components, let us take (Kuk)j = (Ku)j + tkv with
v ∈ R2 arbitrary. Then, the following limit holds true

(Kδu)j = lim
k→∞

(Kuk)j − (Ku)j
tk

= v. (5.15)

Since we took v ∈ R2 arbitrary, it follows that (Kδu) ∈ R2. Furthermore, since
qj = αj((Ku)j/∥(Ku)j∥) and αj = 0, then qj = 0 in this index set. Then, the
limiting process for the dual variable reads

(δq)j = lim
k→∞

(qk)j − qj
tk

= lim
k→∞

qk
tk

= lim
k→∞

(αk)j
tk

(Kuk)j
∥(Kuk)j∥

,

where we used the characterization (qk)j = (Kuk)j/∥(Kuk)j∥ for the dual variable
in the inactive set. Now, considering the sequence (αk)j = αj + tk(δα)j we obtain

(δq)j = lim
k→∞

αj + tk(δα)j
tk

(Kuk)j
∥(Kuk)j∥

,

= lim
k→∞

(δα)j
(Kuk)j
∥(Kuk)j∥

= (δα)j
(Ku)j
∥(Ku)j∥

. (5.16)

Since αj = 0, the only valid approximations are the ones coming from positive
elements, thus (δα)j ≥ 0. Another possible approximation can be done through
zero-inactive components, meaning (qk)j = 0 and (αk)j = 0. This case implies
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(δq)j = 0, (δα)j = 0 and (Kδu)j ∈ R2, which is a particular case of (5.16).

Case 5: j ∈ T (α,u). There are four ways to approach a triactive component. As
in the zero-inactive case, all valid approximations come from (αk)j ≥ 0, which
again implies (δα)j ≥ 0. Similarly to the zero-inactive case (5.15), we also get
(Kδu)j ∈ R2.

Approximating through a sequence in the inactive set, we obtain

(δq)j = lim
tk→0

1

tk

(
(αk)j

(Kuk)j
∥(Kuk)j∥

)
= (δα)j

(Kδu)j
∥(Kδu)j∥

. (5.17)

Likewise, the approximation can be made using zero-inactive components. In
this case (Kδu)j ̸= 0, (qk)j = 0 and (αk)j = 0. From this sequence we can derive
(δq)j = 0, (δα)j = 0 and (Kδu)j ∈ R2\{0}, which is included in (5.17).

Moving forward, we can also approximate through strongly active entries, i.e.,
(Kuk)j = 0 and ∥(qk)j∥ < (αk)j. From this sequence we know (Kδu)j = 0,
(δα)j ≥ 0, and the dual variable direction will satisfy

∥(δq)j∥ =
∥∥∥∥ limtk→0

(qk)j
tk

∥∥∥∥ = lim
tk→0

1

tk
∥(qk)j∥ ≤ lim

tk→0

1

tk
(αk)j = (δα)j, (5.18)

yielding ∥(δq)j∥ ≤ (δα)j.

Finally, we consider an approximation through biactive components, meaning
(Kuk)j = 0 and ∥(qk)j∥ = (αk)j. We then obtain (Kδu)j = 0, (δα)j ≥ 0 and

∥(δq)j∥ =
∥∥∥∥ limtk→0

(qk)j
tk

∥∥∥∥ = lim
tk→0

1

tk
∥(qk)j∥ = lim

tk→0

1

tk
(αk)j = (δα)j,

which is a particular case of (5.18).

Now, let us name M(α, u,K⊤q) the right-hand side of (5.8). Using this notation,
so far, we have proven that TgphQ(α, u,K⊤q) ⊆ M(α, u,K⊤q). To prove the reverse
inclusion, let us take (δα, δu,K⊤δq) ∈ M(α, u,K⊤q) and in the rest of this section we
will prove that (δα, δu,K⊤δq) ∈ TgphQ(α, u,K⊤q). Thanks to the result in (2.5), we
know that a triplet (δα, δu,K⊤δq) is tangent to gphQ at (α, u,K⊤q) if

lim
t→0

dist((α + tδα, u+ tδu,K⊤q + tK⊤δq), gphQ)

t
= 0,

where dist(v, S) stands for the distance function of a vector v to the set S, presented
previously in definition 2.7.

Since the elements in M(α, u,K⊤q) are characterized by index set, let us consider
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each case separately. The gphQ is a smooth manifold for the inactive and zero-inactive
components, and the tangent elements are fully characterized by its derivative [68,
Example 6.8]. Consequently, the elements defined in this index set are also contained
in TgphQ(α, u,K⊤q). Likewise, the strongly active components lie in the interior of
gphQ, which by definition of tangency, coincides with the definition provided inM.

Now, concerning the biactive components, we know the set M provides two rep-
resentations for the components in this index set. The first being (Kδu)j = 0 and
⟨(δq)j, qj⟩ ≤ αj(δα)j. Furthermore, taking t > 0 and the triplet (αj + t(δα)j, (Ku)j +
t(Kδu)j, qj + t(δq)j), its distance to the gphQ is defined as

inf
(xj ,(Ky)j ,zj)∈gphQ

∥(αj + t(δα)j, (Ku)j + t(Kδu)j, qj + t(δq)j)− (xj, (Ky)j, zj)∥.

Using the properties of the gphQ and M in this index set, namely, (Ku)j = 0 and
(Kδu)j = 0, we may rewrite the previous equation as

inf
∥zj∥=xj

∥(αj + t(δα)j, qj + t(δq)j)− (xj, zj)∥. (5.19)

Considering the optimal values for (xj, zj), it corresponds to the projection of the tuple
(αj + t(δα)j, qj + t(δq)j) onto the cone ∥qj∥ = αj and can be derived to be the following
expressions

xj =

(
αj + t(δα)j + ∥qj + t(δq)j∥

2

)
,

zj =

(
αj + t(δα)j + ∥qj + t(δq)j∥

2

)
qj + t(δq)j
∥qj + t(δq)j∥

.

Replacing these results into (5.19) yields

inf
∥zj∥=xj

∥(αj + t(δα)j − xj, qj + t(δq)j − zj)∥ =∥∥∥∥∥
(
αj + t(δα)j − ∥qj + t(δq)j∥

2
, qj + t(δq)j −

(
αj + t(δα)j + ∥qj + t(δq)j∥

2

)
qj + t(δq)j
∥qj + t(δq)j∥

)∥∥∥∥∥ .
Now, using the properties of the norm in product spaces, we may upper bound this
norm as follows

inf
∥zj∥=xj

∥(αj + t(δα)j − xj, qj + t(δq)j − zj)∥ ≤
(
αj + t(δα)j − ∥qj + t(δq)j∥

2

)
+

∥∥∥∥∥qj + t(δq)j −
(
αj + t(δα)j + ∥qj + t(δq)j∥

2

)
qj + t(δq)j
∥qj + t(δq)j∥

∥∥∥∥∥ . (5.20)

Using the same procedure described in (4.11), we can write the second term in the
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right-hand side equivalently as∥∥∥∥∥qj + t(δq)j −
(
αj + t(δα)j + ∥qj + t(δq)j∥

2

)
qj + t(δq)j
∥qj + t(δq)j∥

∥∥∥∥∥ =
∥qj + t(δq)j∥

2
−
(
αj + t(δα)j

2

)
Furthermore, finding the upper bound of the norm

∥qj + t(δq)j∥2 = ∥qj∥2 + 2t⟨qj, (δq)j⟩+ t2∥(δq)j∥2,
≤ α2

j + 2tαj(δα)j + t2∥(δq)j∥2. (5.21)

From this result, we will divide it by t and take the limit as t→ 0 for each term in the
right-hand side of (5.20). For the first one, we have

lim
t→0

(
αj + t(δα)j − ∥qj + t(δq)j∥

2t

)
= lim

t→0

α + t(δα)j −
√
α2
j + tαj(δα)j + t2∥(δq)j∥2

2t


= −(δα)j

2
(5.22)

Now, for the second one, its limit reads

lim
t→0

∥qj + t(δq)j∥
2t

−
(
αj + t(δα)j

2t

)
≤ lim

t→0

√
α2
j + 2tαj(δα)j + t2∥(δq)j∥2 − αj − t(δα)j

2t
,

=
(δα)j
2

Using both results, we get that the following limit holds true

lim
t→0

inf∥zj∥=xj
∥(αj + t(δα)j − xj, qj + t(δq)j − zj)∥

t
≤ 1

2
((δα)j − (δα)j) = 0.

Consequently, a triplet ((δα)j, (Kδu)j, (δq)j) on M for the biactive components of the
form (Kδu)j = 0 and ⟨qj, (δq)j⟩ ≤ αj(δα)j is indeed part of the tangent cone.

Moving forward, we have a second representation for vectors in the biactive set. We
can also consider the triplets ((δα)j, (Kδu)j, (δq)j) such that (Kδu)j = c̃qj with c̃ ≥ 0, or
equivalently, see (5.12), ⟨(Kδu)j, qj⟩ = αj∥(Kδu)j∥ and ⟨(δq)j, qj⟩ = αj(δα)j. Taking a
t > 0 we will show in the following that a triplet (αj+t(δα)j, (Ku)j+t(Kδu)j, qj+t(δq)j)
is contained in the gphQ. With that goal in mind, let us consider the following product

⟨(Ku)j + t(Kδu)j, qj + t(δq)j⟩ = ⟨qj + t(δq)j, (Ku)j⟩︸ ︷︷ ︸
=0

+t⟨qj, (Kδu)j⟩+ t2⟨(δq)j, (Kδu)j⟩,

= tαj∥(Kδu)j∥+ t2c̃⟨(δq)j, qj⟩
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where we used (5.12) and (5.13). Furthermore, in this representation holds ⟨(δq)j, qj⟩ =
αj(δα)j, replacing this on the previous equation it yields

⟨(Ku)j + t(Kδu)j, qj + t(δq)j⟩ = tαj∥(Kδu)j∥+ t2c̃αj(δα)j.

Now, representing the constant c̃ explicitly, we get c̃ = ∥(Kδu)j∥/αj. The product then
reads

⟨(Ku)j + t(Kδu)j, qj + t(δq)j⟩ = tαj∥(Kδu)j∥+ t2∥(Kδu)j∥(δα)j,
= t∥(Kδu)j∥(αj + t(δα)j),

= (αj + t(δα)j)∥(Ku)j + t(Kδu)j∥.

Consequently, thanks to the previous result and the fact that ∥qj + t(δq)j∥ = (αj +

t(δα)j), we have shown that the triplet (αj+t(δα)j, (Ku)j+t(Kδu)j, qj+t(δq)j) ∈ gphQ.
This result has further implications relating its distance to gphQ. In particular, we
know that

dist((αj + t(δα)j, (Ku)j + t(Kδu)j, qj + t(δq)j), gphQ) = 0,

from where we can conclude that this triplet corresponds to a tangent to gphQ.

Finally, regarding the triactive set, both characterizations trivially imply that for
any t > 0 the triplet (αj+ t(δα)j, (Ku)j+ t(Kδu)j, qj+ t(δq)j) are included in the gphQ.
Consequently, using the same argument as in the previous case, we conclude these are
tangent as well, finishing the proof.

Lemma 5.2. The Fréchet normal cone to the graph of Q is given by

NF
gphQ(α, u,K⊤q) =

(ϑ,K⊤µ, p) :



µj + αjTj(Kp)j = 0, if j ∈ I,

ϑj +
⟨(Ku)j, (Kp)j⟩
∥(Ku)j∥

= 0, if j ∈ I,

ϑj = 0, (Kp)j = 0 if j ∈ As,

ϑj + cαj = 0, (Kp)j = cqj(c ≥ 0), ⟨µj, qj⟩ ≤ 0, if j ∈ B,

ϑj +
⟨(Ku)j, (Kp)j⟩
∥(Ku)j∥

≤ 0, µj = 0, if j ∈ I0,

ϑj + ∥(Kp)j∥ ≤ 0, µj = 0, if j ∈ T .



(5.23)

Proof. Using the definition of the Fréchet normal cone, see Definition 2.8, we know
that we can build it as the polar of the tangent cone. Considering, in particular,
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directions of the form δα = 0, δu ∈ ker(K) and δq = 0, it follows that, for a general
normal vector (ϑ, φ, p), ⟨φ, δu⟩ ≤ 0,∀δu ∈ ker(K) must hold. This implies that φ ∈
ker(K)⊥ = range(K⊤). Consequently, for (δα, δu,K⊤δq) ∈ TgphQ(α, u,K⊤q) we have
that the Fréchet normal cone can be calculated as

NF
gphQ(α, u,K⊤q) = {(ϑ,K⊤µ, p) ∈ Rn × Rn × Rn : ⟨(ϑ,K⊤µ, p), (δα, δu,K⊤δq)⟩ ≤ 0}.

Indeed, we can rewrite this inequality as

n∑
j=1

((δα)jϑj + ⟨(Kδu)j, µj⟩+ ⟨(δq)j, (Kp)j⟩) ≤ 0.

We analyze the different cases according to their index set using this representation,
along with the tangent cone characterization from Lemma 5.1.

Case 1: j ∈ I. Using the characterization of the elements in the tangent cone, we
get

(δα)jϑj + ⟨(Kδu)j, µj⟩+

〈
(δα)j

(Ku)j
∥(Ku)j∥

, (Kp)j

〉
+ ⟨αjTj(Kδu)j, (Kp)j⟩ ≤ 0.

Rearranging the terms and using the symmetry of Tj,

(δα)j

(
ϑj +

⟨(Ku)j, (Kp)j⟩
∥(Ku)j∥

)
+ ⟨(Kδu)j, µj + αjTj(Kp)j⟩ ≤ 0.

Since (Kδu)j ∈ R2 and (δα)j ∈ R, it necessarily must hold

ϑj +
⟨(Ku)j, (Kp)j⟩
∥(Ku)j∥

= 0, µj + αjTj(Kp)j = 0.

Case 2: j ∈ As. In this index set we know that (Kδu)j = 0, (δα)j ∈ R and (δq)j ∈ R2.
Consequently, the product reads

(δα)jϑj + ⟨(δq)j, (Kp)j⟩ ≤ 0,

and we obtain that (Kp)j = 0 and ϑj = 0.

Case 3: j ∈ B. In this index set, there are two conditions in the normal directions.
For the first one, we take (Kδu)j = 0, and the cone inequality reads

(δα)jϑj + ⟨(δq)j, (Kp)j⟩ ≤ 0, ∀(δα)j, (δq)j s.t. ⟨(δq)j, qj⟩ ≤ αj(δα)j. (5.24)
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Taking in particular, (δα)j = 0 we get

⟨(δq)j, (Kp)j⟩ ≤ 0,∀(δq)j s.t. ⟨(δq)j, qj⟩ ≤ 0.

Therefore, (Kp)j = cqj for some c ≥ 0. Using this result in (5.24) for the
particular case (δα)j =

1
αj
⟨(δq)j, qj⟩, we obtain

0 ≥ (δα)jϑj + ⟨(δq)j, cqj⟩ = (δα)j(ϑj + cαj),

from where ϑj + cαj = 0 holds. The resulting cone reads

ϑj + cαj = 0, (Kp)j = cqj, c ≥ 0, µj ∈ R2. (5.25)

For the second case we take (Kδu) = c̃qj (c̃ ≥ 0) in the normal cone inequality,

(δα)jϑj + ⟨c̃qj, µj⟩+ ⟨(Kp)j, (δq)j⟩ ≤ 0,∀(δα)j, (δq)j s.t. ⟨(δq)j, qj⟩ = αj(δα)j.

(5.26)
Again, considering (δα)j = 0 and (Kδu)j = 0, we get

⟨(δq)j, (Kp)j⟩ ≤ 0,∀(δq)j s.t. ⟨(δq)j, qj⟩ = 0.

Consequently, (Kp)j = cqj with c ∈ R. Using this result in (5.26), while keeping
(δα)j = 0, yields c̃⟨qj, µj⟩ ≤ 0. Thanks to the positiveness of c̃ we then get
⟨qj, µj⟩ ≤ 0. Now, applying all previous results to the normal cone inequality, we
get

0 ≥ (δα)jϑj + ⟨cqj, (δq)j⟩ = (δα)jϑj + cαj(δα)j,∀(δα)j ∈ R, c ∈ R,

yielding ϑj + cαj = 0. Therefore, the resulting cone for the second case reads

ϑj + cαj = 0, ⟨qj, µj⟩ ≤ 0, (Kp)j = cqj, c ∈ R. (5.27)

Finally, considering both cases, we obtain

ϑj + cαj = 0 ∧ ⟨µj, qj⟩ ≤ 0 ∧ (Kp)j = cqj ∧ c ≥ 0.

Case 4: j ∈ I0. By using the characterization of the tangent cone in this index set,
we get

(δα)j

(
ϑj +

⟨(Ku)j, (Kp)j⟩
∥(Ku)j∥

)
+ ⟨(Kδu)j, µj⟩ ≤ 0.
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This relationship must hold for all (Kδu)j ∈ R2 and (δα)j ≥ 0, which implies

ϑj +
⟨(Ku)j, (Kp)j⟩
∥(Ku)j∥

≤ 0, ⟨(Kδu)j, µj⟩ ≤ 0.

Since (Kδu)j ∈ R2 we get µj = 0.

Case 5: j ∈ T . For the first case in this index set, we know the elements of the
tangent cone satisfy

(δq)j = (δα)j
(Kδu)j
∥(Kδu)j∥

, (δα)j ≥ 0, (Kδu)j ∈ R2\{0}.

Replacing these terms with the normal cone inequality,

(δα)j

(
ϑj +

⟨(Kp)j, (Kδu)j⟩
∥(Kδu)j∥

)
+ ⟨µj, (Kδu)j⟩ ≤ 0, ∀(δα)j ≥ 0, (Kδu)j ∈ R2\{0}.

In particular, for (δα)j = 0, we get that ⟨µj, (Kδu)j⟩ ≤ 0, for all (Kδu)j ∈ R2\{0},
which implies that µj = 0. Moreover, thanks to the positiveness of (δα)j ≥ 0, we
get

ϑj +
⟨(Kp)j, (Kδu)j⟩
∥(Kδu)j∥

≤ 0,∀(Kδu)j ∈ R2\{0}. (5.28)

Since (5.28) must hold for all (Kδu)j ∈ R2\{0}, we can test it with (Kδu)j =

(Kp)j, from where we get
ϑj + ∥(Kp)j∥ ≤ 0.

Now, regarding the second condition, we know ∥(δq)j∥ − (δα)j ≤ 0, (Kδu)j = 0

and (δα)j ≥ 0. Since (Kδu)j = 0, it follows µj ∈ R2. Using the normal cone
inequality,

0 ≥ (δα)jϑj + ⟨(δq)j, (Kp)j⟩ ≥ (δα)jϑj−∥(δq)j∥∥(Kp)j∥ ≥ (δα)jϑj− (δα)j∥(Kp)j∥,

from where we derive (δα)j(ϑj−∥(Kp)j∥) ≤ 0. Along with the positivity of (δα)j,
this implies ϑj − ∥(Kp)j∥ ≤ 0. Finally, considering both conditions, the result is
obtained.

Lemma 5.3. Let (α, u,K⊤q) ∈ gphQ, described in (5.7), and a triplet (ϑ,K⊤µ, p) ∈
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Rm
+ × Rn × Rn. If (ϑ,K⊤µ, p) satisfies the following conditions

µj + αjTj(Kp)j = 0, if j ∈ I, (5.29a)

ϑj +
⟨(Ku)j, (Kp)j⟩
∥(Ku)j∥

= 0, if j ∈ I, (5.29b)

ϑj = 0, (Kp)j = 0, if j ∈ As, (5.29c)

ϑj = 0, (Kp)j = 0, ∨
(Kp)j = cqj(c ∈ R), ⟨µj, qj⟩ = 0, ∨
ϑj + cαj = 0, (Kp)j = cqj(c ≥ 0), ⟨µj, qj⟩ ≤ 0.

 if j ∈ B, (5.29d)

ϑj +
⟨(Ku)j, (Kp)j⟩
∥(Ku)j∥

≤ 0, µj = 0, if j ∈ I0, (5.29e)

ϑj = 0, (Kp)j = 0, ∨
ϑj + ∥(Kp)j∥ ≤ 0, µj = 0

}
if j ∈ T . (5.29f)

Then, (ϑ,K⊤µ, p) ∈ NM
gphQ(α, u,K⊤q), where NM

gphQ(α, u,K⊤q) stands for the Mor-
dukhovich normal cone to the graph of Q at (α, u,K⊤q).

Proof. Let us recall the definition of the Mordukhovich normal cone for our problem
(see Definition 2.9)

NM
gphQ(α, u,K⊤q) = {(ϑ,K⊤µ, p) : (ϑk,K⊤µk, pk) ∈ NF

gphQ(αk, uk,K⊤qk) :

(ϑk,K⊤µk, pk)→ (ϑ,K⊤µ, p), (αk, uk,K⊤qk)→ (α, u,K⊤q)}.

Considering limiting sequences to the inactive, strongly active, and zero-inactive sets,
the same directions as for the Fréchet normal cone are obtained. The differences lie in
the biactive and triactive sets, where several approximations may be considered.

Case 1: j ∈ B. By taking approximation sequences in the inactive set, from Lemma 5.2
we know

0 = (µk)j + (αk)j
(Kpk)j
∥(Kuk)j∥

− (αk)j
(Kuk)⟨((Kuk)j), (Kpk)j⟩

∥(Kuk)j∥3
. (5.30)

Testing (5.30) with (Kpk)j yields

⟨(µk)j, (Kpk)j⟩ = (αk)j
⟨(Kuk)j, (Kpk)j⟩2

∥(Kuk)j∥3
− (αk)j

∥(Kpk)j∥2

∥(Kuk)j∥
(5.31)

Multiplying with (αk)j∥(Kuk)j∥ on both sides and recalling that the dual variable
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in the inactive set can be uniquely determined by

(qk)j = (αk)j
(Kuk)j
∥(Kuk)j∥

,

we may rewrite (5.31) as follows

(αk)j∥(Kuk)j∥⟨(µk)j, (Kpk)j⟩ = ⟨(qk)j, (Kpk)j⟩
2 − (αk)

2
j∥(Kpk)j∥

2.

Taking the limit as k → ∞ and recalling (αk)j = ∥(qk)j∥ in this index set, we
obtain

⟨qj, (Kp)j⟩
2 = ∥qj∥2∥(Kp)j∥

2,

which implies that (Kp)j = cqj(c ∈ R). Now, testing (5.30) with (qk)j we get the
following product

⟨(µk)j, (qk)j⟩ = (αk)j
⟨(qk)j, (Kuk)j⟩⟨(Kuk)j, (Kpk)j⟩

∥(Kuk)j∥3
− (αk)j

⟨(qk)j, (Kpk)j⟩
∥(Kuk)j∥

,

= (αk)
2
j

⟨(Kuk)j, (Kpk)j⟩
∥(Kuk)j∥2

− (αk)
2
j

⟨(Kuk)j, (Kpk)j⟩
∥(Kuk)j∥2

= 0. (5.32)

Taking the limit, we get that ⟨µj, qj⟩ = 0. Regarding ϑj we have (αk)j(ϑk)j +

⟨(qk)j, (Kpk)j⟩ = 0. Taking the limit as k →∞, we obtain

0 = αjϑj + ⟨qj, (Kp)j⟩ = αjϑj + c∥qj∥2, (c ∈ R),

which implies that ϑj = −cαj with c ∈ R and consequently ϑj ∈ R.

When taking the approximation through the strongly active set, from Lemma 5.2
we know

(ϑk)j = 0, (Kpk)j = 0.

Taking the limit as k → ∞ it reads ϑj = 0 and (Kp)j = 0. Finally, considering
sequences in the biactive set, such approximations take the form

(ϑk)j + c(αk)j = 0, (Kpk)j = c(qk)j, ⟨(µk)j, (qk)j⟩ ≤ 0.

with c ≥ 0. When considering the limit as k → ∞, the cone directions coincide
with the Fréchet normal one.

Case 2: j ∈ T . This index set can be approximated by sequences belonging either to
the inactive, biactive, strongly active, or zero-inactive sets. Considering strongly
active sequences, (Kpk)j = 0 and (ϑk)j = 0. Taking the limit as k → ∞ we get
(Kp)j = 0 and ϑj = 0 as well.

96



Likewise, when taking biactive sequences we get (ϑk)j + c(αk)j = 0, (Kpk)j =

c(qk)j(c ≥ 0) and ⟨(µk)j, (qk)j⟩ ≤ 0. Again, taking the limit as k → ∞ we get,
since qj = 0 and αj = 0, that µj ∈ R2, (Kp)j = 0 and ϑj = 0.

Furthermore, taking sequences in the zero-inactive set we have (µk)j = 0, which
implies that µj = 0. Recalling that for a component in the triactive set, we have
(Ku)j = 0, then the following bound holds true

0 ≥ (ϑk)j +
⟨(Kuk)j, (Kpk)j⟩
∥(Kuk)j∥

= (ϑk)j +
⟨(Kδu)j, (Kpk)j⟩
∥(Kδu)j∥

.

Since (Kδu)j is free in this index set, we may take in particular (Kδu)j = (Kpk)j.
Then, taking the limit as k →∞ yields ϑj + ∥(Kp)j∥ ≤ 0.

When taking inactive sequences, we know that

(µk)j + (αk)j

(
I

∥(Kuk)j∥
−

(Kuk)j(Kuk)
⊤
j

∥(Kuk)j∥3

)
(Kpk)j = 0, (5.33)

(ϑk)j +
⟨(Kuk)j, (Kpk)j⟩
∥(Kuk)j∥

= 0. (5.34)

Multiplying (5.33) with (qk)j it yields

0 = ⟨(µk)j, (qk)j⟩+ (αk)j

(
⟨(Kpk)j, (qk)j⟩
∥(Kuk)j∥

− 1

(αk)
2
j

⟨(qk)j, (Kpk)j⟩∥(qk)j∥2

∥(Kuk)j∥

)
,

which implies that
⟨(µk)j, (qk)j⟩ = 0. (5.35)

Taking the limit as k → ∞ it reads ⟨µj, qj⟩ = 0. Furthermore, since the limit
corresponds to a triactive component, we have ∥qj∥ = 0; consequently, it implies
µj ∈ R2. Moreover, thanks to the property (Ku)j = 0 in a triactive component,
we may rewrite (5.34) as follows

(ϑk)j +
⟨(Kδu)j, (Kpk)j⟩
∥(Kδu)j∥

= 0.

Taking in particular (Kδu)j = (Kpk)j we have (ϑk)j+∥(Kpk)j∥ = 0. Furthermore,
if taking (Kδu)j = −(Kpk)j it also yields (ϑk)j − ∥(Kpk)j∥ = 0. Consequently, it
must hold (ϑk)j = 0 and taking the limit as k →∞ we get ϑj = 0 and (Kp)j = 0

in this index set.

Finally, since we took sequences

(ϑk,K⊤µk, pk) ∈ NF
gphQ(αk, uk,K⊤qk) ⊂ NM

gphQ(αk, uk,K⊤qk)
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and NM
gphQ(α, u,K⊤q) = clNF

gphQ(α, u,K⊤q), the proof is complete.

Theorem 5.1 (M-Stationarity). Let J : Rn → R be continuously differentiable, F :

Rn → R twice continuously differentiable and strongly convex, and (α∗, u∗, q∗) be a
local solution to (5.1). Then there exist KKT multipliers (ϑ,K⊤µ, p) such that

∇F(u∗) +K⊤q∗ = 0, (5.36a)

⟨q∗j , (Ku∗)j⟩ − α
∗
j∥(Ku∗)j∥ = 0, ∀j = 1, . . . ,m, (5.36b)

∥q∗j∥ ≤ α∗
j , ∀j = 1, . . . ,m, (5.36c)

∇uuF(u∗)⊤p−K⊤µ−∇J(u∗) = 0, (5.36d)

ϑ+ ρ = 0, (5.36e)

⟨α∗, ρ⟩ = 0, (5.36f)

ρ ≤ 0, (5.36g)

α∗ ≥ 0, (5.36h)

(ϑ,K⊤µ, p) ∈ NM
gphQ(α

∗, u∗,K⊤q∗) (5.36i)

Proof. Referring to Theorem 2.9 let us take F1(α, u) = ∇F(u) ∈ Rn and F2(α, u) =

(α, u) ∈ Rm
+×Rn. Existence of KKT multipliers is guaranteed if the following constraint

qualification condition holds for (ϑ,K⊤µ, p) ∈ NM
gphQ(α

∗, u∗,K⊤q∗)

[
I 0 0

0 I −∇uuF(u∗)⊤

] ϑ

K⊤µ

p

 ∈ −NM
Rm
+
(α∗)× {0} implies ϑ = 0, K⊤µ = 0, p = 0.

(5.37)
Recalling Remark 2.2 and using the expression of the Mordukhovich normal cone
NM

Rm
+
(α∗) = NRm

+
(α∗) = {v ∈ Rn : ⟨v, α∗⟩ = 0, v ≤ 0}, condition in (5.37) can

also be written as

K⊤µ−∇uuF(u∗)⊤p = 0, (5.38)

⟨α∗, ϑ⟩ = 0, (5.39)

ϑ ≥ 0. (5.40)

Let us take (ϑ,K⊤µ, p) ∈ NM
gphQ(α

∗, u∗,K⊤q∗) and let us multiply (5.38) by p on the
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left. Recalling (Kp)j = 0 in As and µj = 0 in I0, we have for each remaining index set

⟨p,∇uuF(u∗)⊤p⟩ = ⟨p,K⊤µ⟩ =
∑
j∈I

⟨µj, (Kp)j⟩+
∑
j∈B

⟨µj, (Kp)j⟩+
∑
j∈B0

⟨µj, (Kp)j⟩,

=
∑
j∈I

−αj⟨(Kp)j, Tj(Kp)j⟩+
∑
j∈B

c ⟨µj, qj⟩︸ ︷︷ ︸
≤0

+
∑
j∈T

⟨µj, (Kp)j⟩︸ ︷︷ ︸
≤0

≤ 0,

where we used the positive semi-definiteness of the matrix Tj and the characterization
of the Mordukhovich normal cone. Furthermore, using the strong convexity of the
function F we have ⟨p,∇uuF(u∗)⊤p⟩ > 0, ∀p\{0}. Both inequalities imply p = 0 and,
according to (5.38), it also yields K⊤µ = 0. Moreover, if we consider the index set
I ∪ As ∪ B, we know in all these sets α∗

j > 0, and therefore, to satisfy equation (5.39)
it must hold ϑj = 0. Since p = 0 in T we know ϑj = 0 or ϑj ≤ ∥(Kp)j∥ for this index

set. In both cases, it leads to ϑj = 0. In I0, we have ϑj ≤ −
⟨(Ku)j ,(Kp)j⟩

∥(Ku)j∥
= 0 and (5.40)

yields ϑj = 0. Therefore, ϑj = 0 for all j.

Consequently, the existence of multipliers is guaranteed and there exists a vector
ρ ∈ NM

Rm
+
(α∗) = {v ∈ Rn : ⟨v, α∗⟩ = 0, v ≤ 0} and KKT multipliers (ϑ,K⊤µ, p) ∈

NM
gphQ(α

∗, u∗,K⊤q∗) such that

0 = ∇J(u∗) +∇uF2(α
∗, u∗)⊤

[
ϑ

K⊤µ

]
−∇uF1(α

∗, u∗)⊤p, (5.41)

0 = ∇αF2(α
∗, u∗)⊤

[
ϑ

K⊤µ

]
−∇αF1(α

∗, u∗)⊤p+ ρ. (5.42)

To recover the optimality system in (5.36), let us take (α∗, u∗, q∗), a local optimal
solution of (4.1). Then, note that equations in (5.41) and (5.42) correspond to equations
(d) and (e) respectively. Taking a ρ ∈ Rn we must add the conditions ⟨α∗, ρ⟩ = 0 and
ρ ≤ 0 to guarantee it is contained in NM

Rm
+
(α∗), yielding equations (f) and (g). Finally,

equations (a-c) correspond to the state constraints of the original problem.

5.2 Bouligand Stationarity

In this section we study the Bouligand stationarity condition for (3.3). With this goal
in mind, let us introduce the solution operator for the lower-level problem S : Rm

+ ∋
α → u ∈ Rn that maps each parameter α ∈ Rm

+ to the corresponding reconstruction
u ∈ Rn. Since this mapping is single-valued, we can make use of it to formulate (3.3)
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as a reduced optimization problem

min
α ∈ Rm

+

j(α) := J(S(α), utrue). (5.43)

Furthermore, assuming the solution operator is Bouligand (B)-differentiable, i.e., lo-
cally Lipschitz continuous and directionally differentiable. Then, we can use the chain
rule for B-differentiable functions to conclude that the composite mapping j, as a func-
tion of α, is also B-differentiable. In this case, its directional derivative in a direction
h is given by

j′(α;h) = ⟨∇J(u), S ′(α;h)⟩, (5.44)

where S ′(α;h) is the directional derivative of the solution operator in direction h. More-
over, if α∗ is a local optimal solution and u∗ = S(α∗) its corresponding reconstruction,
then it satisfies the following necessary condition:

j′(α∗;α− α∗) = ⟨∇J(u∗), S ′(α∗;α− α∗)⟩ ≥ 0, ∀α ∈ Rm
+ . (5.45)

A point α∗ satisfying the necessary condition (5.45) is called Bouligand (B)-stationary.
This type of stationarity condition is based on the tangent cone to our feasible parame-
ter set and can be interpreted as the counterpart of the implicit programming approach
in the discussion of finite-dimensional MPECs, see [51, Lemma 4.2.5].

Therefore, to fully characterize the B-stationarity condition (5.45), we need to prove
that the solution map is Lipschitz continuous and obtain a proper expression for the
directional derivative of the solution map S ′(α).

Indeed, using the analysis presented in Section 3.1, we already argued there exists
a unique solution for the lower-level problem, with (5.1b) being a particular case.
Consequently, the solution map S : Rm

+ → Rn is singled valued. Moreover, this property
will allow us to formulate the following result.

Theorem 5.2. Let F in (5.1b) be a strongly convex function. Then, the solution op-
erator for the lower-level problem (5.1b) S : Rm

+ ∋ α→ u ∈ Rn is Lipschitz continuous.

Proof. Thanks to Theorem 3.1, we know the lower-level problem has a unique solution.
Moreover, α1, α2 ∈ Rm

+ and its corresponding solutions u1, u2 satisfy

⟨∇F(u1), v − u1⟩+
m∑
j=1

(α1)j∥(Kv)j∥ −
m∑
j=1

(α1)j∥(Ku1)j∥ ≥ 0, ∀v ∈ Rn

⟨∇F(u2), w − u2⟩+
m∑
j=1

(α2)j∥(Kw)j∥ −
m∑
j=1

(α2)j∥(Ku2)j∥ ≥ 0, ∀w ∈ Rn.

100



Taking in particular v = u2 and w = u1 and adding the inequalities, it yields

⟨∇F(u2)−∇F(u1), u2 − u1⟩ ≤
m∑
j=1

((α1)j − (α2)j)(∥(Ku2)j∥ − ∥(Ku1)j∥).

Moreover, since F is strongly convex, with constant c > 0, and using the Cauchy-
Schwarz inequality, we obtain

c∥u2 − u1∥2 ≤
m∑
j=1

(α2,j − α1,j)∥(K(u2 − u1))j∥ ≤ ∥α2 − α1∥
m∑
j=1

∥(K(u2 − u1))j∥,

≤ m∥α2 − α1∥∥K∥∥u2 − u1∥,

where ∥K∥ is the operator norm of the linear operator K. Finally, rearranging the
terms of the inequality, it yields the result

∥u2 − u1∥ ≤
m

c
∥K∥∥α2 − α1∥.

5.2.1 Directional Differentiability

Now, we are interested in the differentiability properties of the solution operator for
the lower-level problem (5.1b). It will require a sensitivity analysis of the solution
operator with respect to the regularization parameter α. Indeed, by taking a perturbed
regularization parameter αt in the primal-dual formulation for the lower-level problem
(3.12b), such that αt

j = αj + thj ≥ 0, we get the following perturbed lower-level
problem:

∇F(ut) +K⊤qt = 0, (5.46a)

⟨qtj, (Kut)j⟩ − (αj + thj)∥(Kut)j∥ = 0, ∀j = 1, . . . ,m, (5.46b)

∥qtj∥ − (αj + thj) ≤ 0, ∀j = 1, . . . ,m. (5.46c)

Thanks to the uniform boundedness of qt, there exists a subsequence, denoted the same,
that converges to an element q̃ ∈ Rm×2, as t → 0. Additionally, using the Lipschitz
continuity of the solution operator, we know the following sequence is bounded∥∥∥∥ut − ut

∥∥∥∥ ≤ m

c

∥∥∥∥αt − α
t

∥∥∥∥ =
m

c
∥h∥ <∞.
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Consequently, we can guarantee the existence of a subsequence of {(ut−u)/t}, denoted
with the same symbol, satisfying the following limit

lim
t→0

ut − u
t
→ η ∈ Rn. (5.47)

Theorem 5.3. The limit described in (5.47) satisfies η ∈ C(α, u) where

C(α, u) :=

v ∈ Rn :

(Kv)j = 0, ∀j ∈ As,

⟨qj, (Kv)j⟩ = αj∥(Kv)j∥, ∀j ∈ B.

 (5.48)

Proof. By adding the complementarity relationships in (5.3b) and (5.46b), and dividing
by t, we get

〈
qtj − qj
t

, (Ku)j

〉
+

〈
qtj,

(Kut)j − (Ku)j
t

〉

− αj

(
∥(Kut)j∥ − ∥(Ku)j∥

t

)
− hj∥(Kut)j∥ = 0. (5.49)

As previously stated, the uniform boundedness of qt guarantees the existence of a
subsequence that converges to an element q̃. Therefore, taking the limit as t → 0 in
(5.49), for j ∈ As ∪ B it yields

⟨q̃j, (Kη)j⟩ − αj∥(Kη)j∥ − hj∥(Ku)j∥ = 0,

where we used the Bouligand differentiability of the Euclidean norm. Furthermore,
since (Ku)j = 0 for j ∈ As ∪ B, we get that

⟨q̃j, (Kη)j⟩ − αj∥(Kη)j∥ = 0.

Moreover, for j ∈ As, recalling αj > 0 in this index set, we get

αj∥(Kη)j∥ = ⟨q̃j, (Kη)j⟩ ≤ ∥q̃j∥∥(Kη)j∥ < αj∥(Kη)j∥,

which only holds if (Kη)j = 0 in this index set, finishing the proof.

Remark 5.1. If q1 and q2 are two different slack variables associated with the pa-
rameter α and its corresponding solution u in (3.12), then the two sets Ci defined as
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follows

Ci(α, u) :=v ∈ Rn :

(Kv)j = 0, if ∥qij∥ < αj,

⟨qij, (Kv)j⟩ = αj∥(Kv)j∥, if (Ku)j = 0, αj > 0, ∥qij∥ = αj.

 , i = 1, 2

coincide, since K⊤q1 = −∇F(u) = K⊤q2. Consequently, the set C(α, u) does not
depend on the slack variable, only on the solution u and the parameter α. Hereafter,
to simplify the notation, we will omit the arguments in the set notation as follows
C := C(α, u).

Lemma 5.4. The cone C can alternatively be written as

C =

{
v ∈ Rn : ⟨K⊤q, v⟩ ≥

∑
j∈I

〈
αj

(Ku)j
∥(Ku)j∥

, (Kv)j

〉
+

∑
j∈As∪B

αj∥(Kv)j∥

}
(5.50)

Proof. Let us denote the set on the right-hand side in (5.50) as M. Taking v ∈ C, as
in (5.48), and using its definition, we obtain

⟨K⊤q, v⟩ =
∑
j∈I

⟨qj, (Kv)j⟩+
∑
j∈As

⟨qj, (Kv)j⟩+
∑
j∈B

⟨qj, (Kv)j⟩,

=
∑
j∈I

〈
αj

(Ku)j
∥(Ku)j∥

, (Kv)j

〉
+
∑
j∈As

⟨qj, (Kv)j︸ ︷︷ ︸
=0

⟩+
∑
j∈B

αj∥(Kv)j∥,

and, consequently, C ⊂ M.

To prove the reverse inclusion, let us take v ∈ M. Then, we may rewrite (5.50) as
follows

∑
j∈I

〈
αj

(Ku)j
∥(Ku)j∥

,+

〉 ∑
j∈As∪B

⟨qj, (Kv)j⟩ ≥
∑
j∈I

〈
αj

(Ku)j
∥(Ku)j∥

,+

〉 ∑
j∈As∪B

αj∥(Kv)j∥.

using the Cauchy-Schwarz inequality and ∥qj∥ ≤ αj for all j ∈ As ∪ B we get∑
j∈As∪B

αj∥(Kv)j∥ ≤
∑

j∈As∪B

⟨qj, (Kv)j⟩ ≤
∑

j∈As∪B

∥qj∥︸︷︷︸
≤αj

∥(Kv)j∥ ≤
∑

j∈As∪B

αj∥(Kv)j∥.

Consequently, it holds ∑
j∈As∪B

⟨qj, (Kv)j⟩ −
∑

j∈As∪B

αj∥(Kv)j∥ = 0, (5.51)

103



Therefore, for each index in As ∪ B we have

⟨qj, (Kv)j⟩ − αj∥(Kv)j∥ = 0.

Taking, in particular, j ∈ As, and again using the Cauchy-Schwarz inequality, along
with the property ∥qj∥ < αj, it yields

αj∥(Kv)j∥ = ⟨qj, (Kv)j⟩ ≤ ∥qj∥︸︷︷︸
<αj

∥(Kv)j∥ < αj∥(Kv)j∥,

which implies that (Kv)j = 0 for all j ∈ As, and it follows that M ⊂ C, concluding
the proof.

Now, to prove the directional differentiability of the solution operator for the lower-
level problem (5.1b), we will first demonstrate the following lemmata.

Lemma 5.5. Let Rm
+ ∋ α and Rm

+ ∋ α + th. Then for every v ∈ C, it holds

〈
K⊤
(
qt − q
t

)
, v

〉
≤
∑
j∈I

αj

t

〈
(Kut)j
∥(Kut)j∥

−
(Ku)j
∥(Ku)j∥

, (Kv)j

〉

+
∑
j∈I

hj

〈
(Kut)
∥(Kut)j∥

, (Kv)j

〉
+
∑
j∈B

hj∥(Kv)j∥+
∑

j∈T ∪I0

hj∥(Kv)j∥. (5.52)

Proof. Given that v ∈ C, let us first bound the following product

⟨K⊤qt, v⟩ =
∑
j∈I

⟨qtj, (Kv)j⟩+
∑
j∈As

⟨qtj, (Kv)j︸ ︷︷ ︸
=0

⟩+
∑
j∈B

⟨qtj, (Kv)j⟩+
∑

j∈T ∪I0

⟨qtj, (Kv)j⟩,

≤
∑
j∈I

〈
(αj + thj)

(Kut)j
∥(Kut)j∥

, (Kv)j

〉
+
∑
j∈B

(αj + thj)∥(Kv)j∥+
∑

j∈T ∪I0

thj∥(Kv)j∥,

for t sufficiently small, since ut → u implies I(α, u) ⊂ I(α+ th, ut), where we used the
property (Kv)j = 0 for j ∈ As and αj = 0 for j ∈ T ∪ I0, along with Cauchy-Schwarz
inequality and ∥qtj∥ ≤ αj + thj. Now, as v ∈ C we know the bound in (5.50) holds, i.e.,

⟨K⊤q, v⟩ ≥
∑
j∈I

〈
αj

(Ku)j
∥(Ku)j∥

, (Kv)j

〉
+
∑
j∈B

αj∥(Kv)j∥.
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Therefore,

⟨K⊤(qt − q), v⟩ ≤
∑
j∈I

αj

〈
(Kut)j
∥(Kut)j∥

−
(Ku)j
∥(Ku)j∥

, (Kv)j

〉

+
∑
j∈I

thj

〈
(Kut)j
∥(Kut)j∥

, (Kv)j

〉
+
∑
j∈B

thj∥(Kv)j∥+
∑

j∈T ∪I0

thj∥(Kv)j∥.

Finally, dividing both sides by t yields the result.

Lemma 5.6. Let Rm
+ ∋ α and Rm

+ ∋ α + th. Then, it holds

〈
K⊤
(
qt − q
t

)
,
ut − u
t

〉
≥
∑
j∈I

αj

t

〈
(Kut)j
∥(Kut)j∥

−
(Ku)j
∥(Ku)j∥

,
(Kut)j − (Ku)j

t

〉

+
∑
j∈I

hj

〈
(Kut)
∥(Kut)j∥

,
(Kut)j − (Ku)j

t

〉
+

1

t

∑
j∈A∪I0

hj(∥(Kut)j∥ − ∥(Ku)j∥),

where A = As ∪ B ∪ T .

Proof. For t small enough, we can split the product by their index set〈
K⊤
(
qt − q
t

)
,
ut − u
t

〉
=

∑
j∈I

αj

t

〈
(Kut)j
∥(Kut)j∥

−
(Ku)j
∥(Ku)j∥

,
(Kut)j − (Ku)j

t

〉
+
∑
j∈I

hj

〈
(Kut)j
∥(Kut)j∥

,
(Kut)j − (Ku)j

t

〉

+
1

t

∑
j∈As∪B

〈
qtj − qj,

(Kut)j − (Ku)j
t

〉
+

1

t

∑
j∈I0∪T

〈
qtj − qj,

(Kut)j − (Ku)j
t

〉
.

Focusing, on the index set As ∪ B, the complementarity relations in (3.12) and (5.46)
yield

1

t2

∑
j∈As∪B

⟨qtj − qj, (Kut)j − (Ku)j⟩

=
1

t2

∑
j∈As∪B

⟨qtj, (Kut)j⟩ − ⟨q
t
j, (Ku)j⟩ − ⟨qj, (Ku

t)j⟩+ ⟨qj, (Ku)j⟩,

≥ 1

t2

∑
j∈As∪B

(αj + thj)∥(Kut)j∥ − ∥qtj∥︸︷︷︸
≤αj+thj

∥(Ku)j∥ − ∥qj∥︸︷︷︸
≤αj

∥(Kut)j∥+ αj∥(Ku)j∥,

≥ 1

t

∑
j∈As∪B

hj(∥(Kut)j∥ − ∥(Ku)j∥).
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Using the same analysis over the set I0 ∪ T we get

1

t2

∑
j∈I0∪T

⟨qtj − qj, (Kut)j − (Ku)j⟩ =
1

t2

∑
j∈I0∪T

⟨qtj, (Kut)j⟩ − ⟨q
t
j, (Ku)j⟩,

≥ 1

t2

∑
j∈I0∪T

thj∥(Kut)j∥ − ∥q
t
j∥︸︷︷︸

≤thj

∥(Ku)j∥ ≥
1

t

∑
j∈I0∪T

hj(∥(Kut)j∥ − ∥(Ku)j∥).

Theorem 5.4. Let α ∈ Rm
+ and h ∈ Rn be a direction such that α+ th ≥ 0 for t small

enough. The solution operator S : α → S(α) = u ∈ Rn is directionally differentiable
and its directional derivative η ∈ C at u, in direction h, is given by the solution of the
following variational inequality

⟨∇uuF(u)η, v− η⟩+
∑
j∈I

αj⟨Tj(Kη)j, (Kv)j − (Kη)j⟩+hj

〈
(Ku)j
∥(Ku)j∥

, (Kv)j − (Kη)j

〉

+
∑
j∈B

hj
αj

⟨qj, (Kv)j − (Kη)j⟩+
∑

j∈I0∪T

hj(∥(Kv)j∥ − ∥(Kη)j∥) ≥ 0, ∀v ∈ C, (5.53)

where Tj(Kv)j =
(Kv)j

∥(Ku)j∥
− (Ku)j(Ku)⊤j (Kv)j

∥(Ku)j∥3
for v ∈ Rn.

Proof. To verify the variational inequality, let us take (5.46), (3.12) and test them with
v − ut−u

t
, with v ∈ C

0 =

〈
∇F(ut)−∇F(u)

t
, v − ut − u

t

〉
+

〈
K⊤
(
qt − q
t

)
, v − ut − u

t

〉
,

=

〈
∇F(ut)−∇F(u)

t
, v − ut − u

t

〉
+

〈
K⊤
(
qt − q
t

)
, v

〉
−
〈
K⊤
(
qt − q
t

)
,
ut − u
t

〉
Now, applying the bounds in Lemmas 5.5 and 5.6 we have

0 ≤
〈
∇F(ut)−∇F(u)

t
, v − ut − u

t

〉
+
∑
j∈I

αj

t

〈
(Kut)j
∥(Kut)j∥

−
(Ku)j
∥(Ku)j∥

, (Kv)j −
(Kut)j − (Ku)j

t

〉

+ hj

〈
(Kut)
∥(Kut)j∥

, (Kv)j −
(Kut)j − (Ku)j

t

〉
+
∑
j∈B

hj∥(Kv)j∥

+
∑

j∈I0∪T

hj∥(Kv)j∥ −
1

t

∑
j∈As∪B∪I0∪T

hj(∥(Kut)j∥ − ∥(Ku)j∥).

Taking the limit t→ 0, as well as the differentiability of the term x/∥x∥ in the inactive
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set, and given that (Kη)j = 0 in the strongly active set As, it yields

0 ≤ ⟨∇uuF(u)η, v− η⟩+
∑
j∈I

αj

〈(
I

∥(Ku)j∥
−

(Ku)j(Ku)
⊤
j

∥(Ku)j∥3

)
(Kη)j, (Kv)j − (Kη)j

〉

+hj

〈
(Ku)j
∥(Ku)j∥

, (Kv)j − (Kη)j

〉
+
∑
j∈B

hj(∥(Kv)j∥−∥(Kη)j∥)+
∑

j∈I0∪T

hj(∥(Kv)j∥−∥(Kη)j∥).

Using the definition for Tj and recalling v, η ∈ C, the inequality takes the form in
(5.53).

Now it is required to verify the uniqueness of the limit. For this purpose, let us
note that (5.53) is a variational inequality

⟨∇uuF(u)η, v − η⟩+
∑
j∈I

αj⟨Tj(Kη)j, (Kv)j − (Kη)j⟩+
∑

j∈I0∪T

hj(∥(Kv)j∥ − ∥(Kη)j∥)

≥ −
∑

j∈I∪B

hj
αj

〈
qj, (Kv)j − (Kη)j

〉
,∀v ∈ C

Now, recalling that the function f(z) :=
∑m

j=1 ∥(Kz)j∥ is indeed convex, lower semi-
continuous, and proper, the right-hand side is continuous and linear, and finally, using
the strong convexity of F and the positive semi-definiteness of Tj, the bilinear form in
the smooth part of the left-hand side is V-elliptic, i.e.,

⟨∇uuF(u)v, v⟩+
∑
j∈I

αj⟨Tj(Kv)j, (Kv)j⟩ ≥ c∥v∥2.

We know by [34, Chapter I, Theorem 4.1], that there exists a unique solution for this
variational inequality.

Finally, we have proven the following result by using the demonstrated Bouligand
differentiability of the solution operator and the corresponding characterization of the
directional derivative.

Theorem 5.5. Let α∗ ∈ Rm
+ be a local optimal solution of (5.43) and u∗ = S(α∗).

Then α∗ is a B-stationary point, i.e., it satisfies the following inequality

⟨∇J(u∗), S ′(α∗;α− α∗)⟩ ≥ 0, ∀α ∈ Rm
+ , (5.54)

where S ′(α∗;α− α∗) =: η is the unique solution to (5.53).

Proof. Since we know that the solution operator is directionally differentiable, as shown
in theorem 5.4, along with its local Lipschitz continuity as demonstrated in theorem 5.2,
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we have that the solution operator is Bouligand differentiable. Consequently, a local
optimal solution α∗ for problem (5.43) and u∗ = S(α∗) its optimal reconstruction,
satisfy the necessary optimality condition (5.45).

5.2.2 Strict Complementarity

The characterization of the directional differentiability can take different formulations
if any of the active sets becomes empty. For instance, assuming the zero-inactive and
triactive sets are empty, i.e., I0 ∪T = ∅, then the directional derivative of the solution
operator can be written as the following variational inequality of the first kind

⟨∇uuF(u)η, v− η⟩+
∑
j∈I

αj⟨Tj(Kη)j, (Kv)j − (Kη)j⟩+hj

〈
(Ku)j
∥(Ku)j∥

, (Kv)j − (Kη)j

〉

+
∑
j∈B

hj
αj

(⟨qj, (Kv)j − (Kη)j⟩) ≥ 0, ∀v ∈ C. (5.55)

Furthermore, assuming an empty biactive set and αj > 0, for all j, we obtain that the
solution operator is Fréchet differentiable, as stated in the following theorem.

Theorem 5.6. Let us assume the index set B ∪ I0 ∪ T is empty. Then, the solution
operator is Fréchet differentiable, and the derivative can be computed as the solution
of the following system of equations for some ξ ∈ Rm×2

∇uuF(u)η +K⊤ξ = 0, (5.56a)

ξj − αjTj(Kη)j −
hj
αj

qj = 0, ∀j ∈ I, (5.56b)

(Kη)j = 0, ∀j ∈ As. (5.56c)

Proof. Using the empty biactive set assumption, we get that the cone C becomes the
following linear subspace C = {v ∈ Rn : (Kv)j = 0 if (Ku)j = 0}. Thus, the variational
inequality in (5.55) becomes the following variational equation

⟨∇uuF(u)η, v − η⟩+
∑
j∈I

αj⟨Tj(Kη)j, (Kv)j − (Kη)j⟩

+ hj

〈
(Ku)j
∥(Ku)j∥

, (Kv)j − (Kη)j

〉
= 0, ∀v ∈ C. (5.57)

(5.57) guarantees that the directional derivative of the solution operator is a linear
mapping w.r.t. the direction h. Since S is Bouligand differentiable, it implies the
Fréchet differentiability [74, Proposition 3.1.2]. Furthermore, (5.57) is equivalent to
the following optimization problem
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min
η ∈ C

1

2
⟨η,∇uuF(u)η⟩+

∑
j∈I

αj

(
∥(Kη)j∥2

∥(Ku)j∥
−
⟨(Ku)j, (Kη)j⟩2

∥(Ku)j∥3

)
+ hj

〈
(Kη)j,

(Ku)j
∥(Ku)j∥

〉
(5.58)

Then the KKT-optimality conditions for this problem look as follows

⟨∇uuF(u)η, v⟩+
∑
j∈I

αj⟨Tj(Kη)j, (Kv)j⟩+ hj

〈
(Ku)j
∥(Ku)j∥

, (Kv)j

〉
+
∑
j∈As

⟨νj, (Kv)j⟩ = 0, ∀v ∈ Rn

(Kη)j = 0,∀j ∈ As,

with Lagrange multipliers νj ∈ R2. Since all the constraints are linear, the Abadie
constraint qualification condition [33, Definition 2.33] is satisfied. By introducing ξ ∈
Rm×2 as

ξj :=

νj, ∀j ∈ As

αjTj(Kη)j +
hj

αj
qj, ∀j ∈ I

the result is obtained.

5.2.3 Bouligand Subdifferential

Even though the Bouligand stationarity condition presented in Section 5.2 holds for any
local optimal solution without requiring any constraint qualification, its purely primal
form is generally not amenable for algorithmic purposes; this limitation is related to the
non-linearity of the directional derivative. As a remedy, in this section, we will focus on
studying the Bouligand subdifferential of the solution operator S. Characterizing the
linear elements of this subdifferential turns out to be helpful when devising a numerical
algorithm to solve the bilevel problem.

Thanks to the local Lipschitz continuity of S, shown in Section 5.2, and Rademacher’s
theorem, we know the solution operator is differentiable almost everywhere. Further-
more, denoting the set of points where this function is differentiable as DS, the Bouli-
gand subdifferential of the solution map ∂BS(α) is defined as in Definition 2.3.

In the next result, a characterization of the elements of the Bouligand subdifferential
is provided. We assume only along this section that αj > 0, i.e., T ∪ I0 = ∅.

Theorem 5.7. Let G ∈ ∂BS(α) with α > 0 and let us introduce the following subspace

V := {v ∈ Rn : (Kv)j = 0, ∀j ∈ As ∪ B1; (Kv)j ∈ span(qj),∀j ∈ B2} (5.59)

Then, there exists a partition of the biactive set B = B1∪B2 such that, for any h ∈ Rm
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such that α + th ≥ 0, Gh =: η̃ ∈ V is the solution of the system

⟨∇uuF(u)η̃, v⟩+
∑

j∈I∪B2

⟨ξ̃j, (Kv)j⟩ = 0, ∀v ∈ V (5.60a)

ξ̃j − αjTj(Kη̃)j −
hj
αj

qj = 0, ∀j ∈ I, (5.60b)

ξ̃j −
hj
αj

qj = 0, ∀j ∈ B2 (5.60c)

Proof. We know the solution operator is locally Lipschitz continuous (see Theorem 5.2),
which implies it is differentiable almost everywhere. Let us consider a sequence {αk} ⊂
DS such that αk → α and S ′(αk) → G. Since we assumed that αj > 0, we know that
for k sufficiently large, (αk)j > 0, for all j = 1, . . . , n. Moreover, thanks to the Lipschitz
continuity of S, we know that

uk = S(αk)→ S(α) = u,

K⊤qk = −∇F(uk)→ −∇F(u) = K⊤q.

This last statement follows from the fact that uk → u and the continuity of ∇F .
Now, each of this subsequence elements (uk, qk) define their respective inactive Ik :=

I(αk, uk) and strongly active Ak
s := As(αk, uk) sets.

By continuity, we know that I ⊂ Ik and As ⊂ Ak
s , for k sufficiently large. Introducing

the subspace V k := {v ∈ Rn : (Kv)j = 0,∀j ∈ Ak
s} and since {αk} ⊂ DS, it follows

that, for h ∈ Rm, we have that the directional derivative of the solution operator in
direction h, i.e., S ′(αk)h =: ηk ∈ V k satisfies the system

∇uuF(uk)ηk +K⊤ξk = 0, (5.61a)

(ξk)j − (αk)j(Tk)j(Kηk)j =
hj

(αk)j
K⊤

j (qk)j, ∀j ∈ Ik, (5.61b)

(Kηk)j = 0, ∀j ∈ Ak
s , (5.61c)

or equivalently,

⟨∇uuF(uk)ηk, v⟩+
∑
j∈Ik

〈
(αk)j(Tk)j(Kηk)j, (Kv)j

〉
+

hj
(αk)j

⟨(qk)j, (Kv)j⟩ = 0,∀v ∈ V k,

(5.62)
From the definition of the Bouligand subdifferential it follows that η̃ = limk→∞ ηk.
Moreover, since for j ∈ I the sequence {(ξk)j} is bounded, then there exists a subse-
quence that converges to a limit point ξ̃j. Therefore, up to a subsequence, by passing

110



to the limit, we get

ξ̃j − αjTj(Kη̃)j −
hj
αj

qj = 0, ∀j ∈ I,

(Kη̃)j = 0, ∀j ∈ As.

Let us now consider a partition of the biactive set B = B1 ∪ B2, with

B1 := {j ∈ B : ∃{ukl} : (Kukl)j = 0,∀l} and B2 := B\B1.

In the index set B1 we know that (Kukl)j = 0,∀l, i.e., the components are strongly
active. Consequently, from (5.61), it follows that the subsequence (Kηkl)j = 0, for all
l. Since ηk → η̃, we get that

(Kη̃)j = 0, ∀j ∈ As ∪ B1.

Considering the partition B2, we approach a biactive point by a sequence of points
such that (Kuk)j ̸= 0, i.e., j ∈ Ik. Let us first notice that the term on the right-hand
side of (5.61b) is uniformly bounded and, therefore, as k →∞,

∑
j∈Ik

hj
(αk)j

⟨(qk)j, (Kv)j⟩ →
∑

j∈I∪B2

hj
αj

⟨qj, (Kv)j⟩, ∀v ∈ V.

In addition, defining (ζk)j = (αk)j(Tk)j(Kηk)j, for j ∈ Ik, we get that

⟨(ζk)j, (Kηk)j⟩ =
(αk)j
∥(Kuk)j∥

(
∥(Kηk)j∥

2 − 1

∥(Kuk)j∥2
⟨(Kηk)j, (Kuk)j⟩

2

)
≥ 0, ∀j ∈ Ik.

(5.64)
Using the positivity of the term ⟨(ζk)j, (Kηk)j⟩ we have

0 ≤ ⟨(ζk)j, (Kηk)j⟩ ≤
∑
j∈Ik

⟨(ζk)j, (Kηk)j⟩. (5.65)

Furthermore, using the semi-positive definiteness of ∇uuF(uk), we may upper bound
(5.62) for v = ηk, as follows∑

j∈Ik

⟨(ζk)j, (Kηk)j⟩ ≤ ⟨∇uuF(uk)ηk, ηk⟩+
∑
j∈Ik

⟨(ζk)j, (Kηk)j⟩,

= −
∑
j∈Ik

hj
(αk)j

⟨(qk)j, (Kηk)j⟩,

≤
∑
j∈Ik

|hj|∥(Kηk)j∥. (5.66)
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Consequently, joining bounds (5.64)–(5.66), it reads

0 ≤ ⟨(ζk)j, (Kηk)j⟩ ≤ ⟨∇uuF(uk)ηk, ηk⟩+
∑
j∈Ik

⟨(ζk)j, (Kηk)j⟩ ≤
∑
j∈Ik

|hj|∥(Kηk)j∥,

(5.67)
which, since ηk → η̃, as k → ∞, implies that ⟨(ζk)j, (Kηk)j⟩ is uniformly bounded.
Since for j ∈ B2 we know that (Kuk)j → 0, it follows from the previous relations that

α2
j∥(Kη̃)j∥

2 − ⟨qj, (Kη̃)j⟩
2 = lim

k→∞
(αk)

2
j∥(Kηk)j∥

2 − ⟨(qk)j, (Kηk)j⟩
2 = 0,

which implies that (Kη̃)j ∈ span(qj),∀j ∈ B2. Consequently, we have shown that
η̃ ∈ V .

Now, when taking the limit as k → ∞ in (5.62), there may exist sequences in Ik

that converge to a component in B2. To verify that this does not occur, let us take a
v ∈ V and find the limit for the following term

lim
k→∞
⟨(ζk)j, (Kv)j⟩ = lim

k→∞
⟨(ζk)j, c(qk)j⟩ = lim

k→∞

〈
(ζk)j, c(αk)j

(Kuk)j
∥(Kuk)j∥

〉
,

= c lim
k→∞

〈
(αk)j

(Kηk)j
∥(Kuk)j∥

, (αk)j
(Kuk)j
∥(Kuk)j∥

〉

−

〈
(αk)j

⟨(Kηk)j, (Kuk)j⟩(Kuk)j
∥(Kuk)j∥3

, (αk)j
(Kuk)j
∥(Kuk)j∥

〉
,

= c lim
k→∞

(αk)
2
j

∥(Kuk)j∥2
⟨(Kηk)j, (Kuk)j⟩

−
(αk)

2
j

∥(Kuk)j∥4
⟨(Kηk)j, (Kuk)j⟩⟨(Kuk)j, (Kuk)j⟩ = 0.

Consequently, we can see that this product’s limit vanishes for sequences coming from
components either from As ∪B1, where (Kv)j = 0, and from B2 as k →∞. Therefore,
taking the limit as k →∞ in (5.62), yields the result.

Corollary 5.1. Let G ∈ ∂BS(α). There exists a partition of the biactive set B =

B1 ∪ B2 and a multiplier θ ∈ Rn such that, for any h such that α + th ≥ 0, η̃ := Gh is
the unique solution of the system

∇uuF(u)η̃ +KT θ = 0 (5.68a)

θj − αjTj(Kη̃)j −
hj
αj

qj = 0, ∀j ∈ I, (5.68b)

⟨θj, qj⟩ − αjhj = 0, ∀j ∈ B2. (5.68c)
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Proof. Let us consider the functional M ∈ Rn defined by

(M, v) := (∇uuF(u)η̃, v) +
∑
j∈I

⟨αjTj(Kη̃)j, (Kv)j⟩+
∑

j∈I∪B2

hj
αj

⟨qj, (Kv)j⟩, ∀v ∈ V.

(5.60a) can then be written as M ∈ V ⊥. Thanks to the structure of the linear subspace
V , it can be represented in a separate way as V =

(⋂
j∈AS∪B1

V 1
j

)
∩
(⋂

j∈B2
V 2
j

)
, where

V 1
j := {v ∈ Rn : (Kv)j = 0}, j ∈ AS ∪ B1,
V 2
j := {v ∈ Rn : (Kv)j ∈ span(qj)}, j ∈ B2.

Consequently, V ⊥ =
∑

j∈AS∪B1
(V 1

j )
⊥
+
∑

j∈B2
(V 2

j )
⊥.

For j ∈ AS ∪ B1, we get that (V 1
j )

⊥
= ker (Kj)

⊥. Thanks to the orthogonality
relations, it follows that ker (Kj)

⊥ = range(K⊤
j ). Hence, for any ξj ∈ (V 1

j )
⊥, there exist

πj such that ξj = K⊤
j πj. Consequently,∑

j∈AS∪B1

(V 1
j )

⊥
=

∑
j∈AS∪B1

K⊤
j πj, πj ∈ R2.

For j ∈ B2, any v ∈ V 2
j can be represented as a sum of an element from the nullspace

and the row space of Kj, see Theorem 2.2, as follows

v = ϕ+ φ, with (Kjφ) = 0 and ϕ ∈ range(K⊤
j ).

Since (Kv)j ∈ span(qj) and (Kjφ) = 0, it follows that (Kv)j ∈ span(qj) as well.
Let us now consider wj ∈ (V 2

j )
⊥, which can be represented as wj = w̃j + ŵj, where

w̃j ∈ range(K⊤
j ) and ŵj ∈ range(K⊤

j )
⊥
= ker(Kj). Consequently, there exists ψj such

that
wj = K⊤

j ψj + ŵj, with Kjŵj = 0.

Taking the scalar product with vj ∈ V 2
j , we get

(wj, vj) = (K⊤
j ψj + ŵj, ϕ+ φ) = ⟨ψj,Kjϕ⟩+ (ŵj,K⊤

j ψ) + (ŵj, φ) = c⟨ψj, qj⟩+ (ŵj, φ),

since Kjφ = Kjŵj = 0. For the product to be zero, it is then required that (ŵj, φ) =

0,∀φ ∈ ker(Kj) and ⟨ψj, qj⟩ = 0. Since ŵj belongs to ker(Kj) as well, it follows that
ŵj = 0. Consequently,∑

j∈B2

(V 2
j )

⊥
=
∑
j∈B2

K⊤
j ψj, ψj ∈ R2 : ⟨ψj, qj⟩ = 0.
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Altogether, we then obtain that there exist multipliers πj and ψj such that

M +
∑

j∈AS∪B1

K⊤
j πj +

∑
j∈B2

K⊤
j ψj = 0,

with ⟨ψj, qj⟩ = 0. Defining

θj :=


αjTj(Kη̃)j +

hj

αj
qj, j ∈ I,

πj, j ∈ AS ∪ B1,

ψj +
hj

αj
qj, j ∈ B2,

the result is obtained.

Next, we verify that along a given direction, there exists a solution of system (5.60)
which coincides with the directional derivative. When properly characterized, this en-
ables us to use a linear representative of the (otherwise nonlinear) directional derivative
within a solution algorithm.

Theorem 5.8. For any α ∈ Rm
+ and h ∈ Rm such that α+ th ≥ 0, there exists a linear

element η̃ = Gh such that S ′(α)h = Gh.

Proof. Let us recall that, since by assumption T ∪ I0 = ∅, the directional derivative of
the solution mapping, in direction h, is given by the unique η ∈ C solution of

⟨∇uuF(u)η, v − η⟩+
∑
j∈I

⟨αjTj(Kη)j, (Kv)j − (Kη)j⟩ ≥

−
∑
j∈I

hj

〈
(Ku)j
∥(Ku)j∥

, (Kv)j − (Kη)j

〉
−
∑
j∈B

hj
αj

⟨qj, (Kv)j − (Kη)j⟩, (5.69)

for all v ∈ C. Considering the sets B1 := {j ∈ B : (Kη)j = 0} and B2 := B\B1,
and since η ∈ C, it also follows that (Kη) = cjqj, for all j ∈ B2, for some cj > 0.
Consequently, η belongs to the subspace

V := {v ∈ Rn : (Kv)j = 0, ∀j ∈ As ∪ B1; (Kv)j ∈ span(qj), ∀j ∈ B2}.

Moreover, for any w ∈ V it follows that, for t sufficiently small, η± tw ∈ C(u). Testing
(5.69) with these vectors, we then get that

⟨∇uuF(u)η, w⟩+
∑
j∈I

⟨αjTj(Kη)j, (Kw)j⟩ = −
∑

j∈I∪B2

hj
αj

⟨qj, (Kw)j⟩, ∀w ∈ V,

and, consequently, the directional derivative takes the form η = Gh, solution of (5.60),
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with B2 as defined above.

5.3 Nonsmooth Trust Region Algorithm

In this section, we describe the numerical algorithm used for finding optimal parameters
of (5.1). Thanks to the Bouligand subdifferential characterization given in Section 5.2.3,
it is possible to compute a linearized representative of the directional derivative via
the linear system (5.60). Using this information, we can make use of a descent-like
algorithm for its numerical solution. Indeed, by using the uniqueness properties of the
solution operator, we can write a reduced optimization problem:

min
α∈Rm

+

j(u(α)), (5.70)

where u(α) is the image reconstruction corresponding to a particular value of α (see
(5.43) as well). With this reduced problem, we can use the stationarity condition for
the bilevel problem described in (5.44) and the directional derivative characterization
(5.56). By using the definition of the directional derivative for the reduced optimization
problem, we get

⟨j′(α), h⟩ = ⟨∇J(u), S ′(α;h)⟩ = ⟨∇J(u), η̃⟩. (5.71)

where η̃ is a solution of system (5.60) for a particular partition of the biactive set
B = B1 ∪ B2 and S ′(α;h) is the directional derivative of the solution operator at α
in direction h. Let us now define a generalized adjoint p ∈ Rn as the solution of the
following system:

⟨∇uuF(u)⊤p, v⟩+
∑
j∈I

⟨µj, (Kv)j⟩ − ⟨∇J(u), v⟩ = 0, ∀v ∈ V,

µj − αjTj(Kp)j = 0, ∀j ∈ I,

where V is defined as in Theorem 5.7. Using the results in Theorem 5.8, we know
that η̃ ∈ V is a linear representative of the directional derivative. Consequently, (5.71)
reads

⟨j′(α), h⟩ = ⟨∇J(u), η̃⟩ = ⟨∇uuF(u)⊤p, η̃⟩+
∑
j∈I

⟨αjTj(Kp)j, (Kη̃)j⟩.

Rearranging the terms, we get

⟨j′(α), h⟩ = ⟨p,∇uuF(u)η̃⟩+
∑
j∈I

⟨(Kp)j, αjTj(Kη̃)j⟩ = ⟨p,∇uuF(u)η̃⟩+
∑
j∈I

⟨(Kp)j, λ̃j⟩.
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Finally, using (5.56) we get

⟨j′(α), h⟩ = ⟨g, h⟩ = −
∑

j∈I∪B2

hj
αj

⟨qj, (Kp)j⟩. (5.72)

In our algorithm, we will use the nonsmooth trust-region method detailed in Section 5.3.
This method uses two different model functions and switches between them according
to the size of the trust-region radius. Along the same line, we will implement two
models in this algorithm. A non-regularized model that use (5.72) for a particular
partition of the biactive set B = B1 ∪ B2 to build a quadratic model. Indeed, if the
value for the radius runs above a predetermined threshold value ∆t, the model reads

mk(αk + dk) = j(αk)− ⟨gk, dk⟩+
1

2
⟨dk, Bkdk⟩,

= j(αk)−
∑

j∈I∪B2

(dk)j
(αk)j

⟨(qk)j, (Kpk)j⟩+
1

2
⟨dk, Bkdk⟩

where Bk is a BFGS approximation of the Hessian matrix.

Furthermore, when the trust-region radius falls below a threshold value, the algo-
rithm switches the model based on a gradient built using a regularization, as presented
in Section 3.5. In particular, considering the KKT optimality system for the smooth
bilevel problem (3.18) with λj = 1, we can find the regularized adjoint pγ ∈ Rn as the
solution of the following system

∇uJ(u) +∇uuF(u)⊤pγ +K⊤β = 0,

βj − αjh
′′
γ((Ku)j)

⊤(Kpγ)j = 0, ∀j = 1, . . . ,m.

Indeed, we can make use of the regularized adjoint pγ, we know the derivative of the
regularized reduced cost function j(α) = J(uγ(α)) reads

(j′(α))j = (gγ)j = ⟨h
′
γ((Ku)j), (Kpγ)j⟩. (5.73)

Consequently, the model to be used when the trust-region radius falls below the thresh-
old value reads

mk(αk + dk) = j(αk)− ⟨gγ,k, dk⟩+
1

2
⟨dk, Bkdk⟩.

Finally, using both the element of the Bouligand subdifferential, the step selection
procedure, and the regularized gradient described in this section, we can propose a
trust-region algorithm for solving this bilevel problem following the steps that are
provided in Algorithm 5.1.
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Algorithm 5.1 Non-smooth Trust-Region for Learning the Regularization Weight
1: Choose initial parameter α0, radius ∆0, 0 < η1 ≤ η2 < 1, 0 < γ1 ≤ 1 ≤ γ2 and
tol > 0

2: Choose initial second order matrix B0 and a threshold radius ∆t

3: Compute j(α0) and set k = 0.
4: while ∆k > tol do
5: if ∆k >= ∆t then
6: Compute a linear element of the Bouligand subdifferential gk at αk as the

solution of (5.72) for a particular partition of the biactive set B = B1 ∪ B2.
7: Build the model function as: mk(αk + dk) = j(αk) + g⊤k dk +

1
2
d⊤k Bkdk.

8: else
9: Compute a regularized gradient gγ,k at αk using (5.73).

10: Build the model function as: mk(αk + dk) = j(αk) + g⊤γ,kdk +
1
2
d⊤k Bkdk.

11: end if
12: Compute a step sk that “sufficiently” reduces the model mk such that αk + sk ∈

B∆k

13: Update second order matrix Bk using limited memory BFGS.
14: Calculate the predicted and actual reduction

predk = mk(αk)−mk(αk + sk),

aredk = j(αk)− j(αk + sk).

15: Compute the quality measure ρk = aredk/predk.

16: αk+1 =

{
αk if ρk ≤ η1,

αk + sk otherwise.

17: ∆k+1 =


γ2∆k if ρk ≥ η2,

∆k if ρk ∈ (η1, η2),

γ1∆k if ρk < η1.
18: k ← k + 1
19: end while
20: return αk
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5.4 Numerical Experiments

In this section we report on the performance of Algorithm 5.1 presented in Section 5.3
to find optimal parameters. For the upper-level cost function, we chose the following
quadratic function

J(u, ū) :=
1

N

N∑
k=1

∥uk − ūk∥2

and for the lower level problem, we will consider the patch parameter total variation
denoising

uk = argmin
u

1

2
∥u− f∥2 +

m∑
j=1

P(α)j∥(Ku)j∥

where α ∈ Rp
+ with p << m and P : Rp → Rm is a linear patch operator defined as

follows
P(α) := α√

p×√
p ⊗ I√

m√
p
×

√
m√
p

∈ R
√
m×

√
m,

here, ⊗ is the Kronecker product, λ√p×√
p is a matrix built by reordering the elements

of λ into a matrix of size √p×√p, and I√
m√
p
×

√
m√
p

is a matrix of ones of size
√
m√
p
×

√
m√
p
.

This product outputs a matrix of size
√
m ×

√
m that is reshaped into a vector of m

components.

For all experiments we chose ∆0 = 0.1, ∆t = 1 ·10−4 and the parameter γ = 1 ·10−5

for the local regularization in the second phase of the algorithm. With this goal in
mind, we prepared two training image datasets.

5.4.1 Single Training Pair

The first experiment we will explore is a single 128 by 128-pixel image training pair
based on the cameraman image and a corrupted version, obtained by adding Gaussian
noise with zero mean and standard deviation σ = 0.05. Figure 5.2 shows this training
image pair along with the optimal parameter obtained using the trust-region algo-
rithm for both a scalar and a two-dimensional patch parameter. An improvement in
the reconstruction quality when using a two-dimensional patch parameter is verified ac-
cording to the SSIM value of the image reconstructions. Moreover, when using a scalar
and a two-dimensional parameter, the reduced cost function is shown in Figure 5.3,
where the non-convexity of the reduced cost functions is inferred.

Table 5.3 shows the reconstruction quality measures on the cameraman training
dataset when using different patches sizes, along with the number of trust-region iter-
ations, cost evolution, the number of function evaluations nfev and both the number
of times the gradient ngev and smooth regularized gradient nreggev were used. As
expected, an improvement in the quality of the reconstructed images can be confirmed
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Original SSIM=0.7494
PSNR=23.1698

α∗ = 0.0155
SSIM=0.8430
PSNR=23.8045

α1

α2

α∗ = [0.0233; 0.0126]
SSIM=0.8537
PSNR=23.8345

Figure 5.2: Optimal reconstructions using a scalar regularization parameter and a 2
dimensional regularization parameter.

0 1 2 3 4 5

·10−2

34

36

38

40

42

α

∥u
−
ū
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Figure 5.3: Values for the l2 squared cost function using a scalar regularization pa-
rameter and a two-dimensional regularization parameter using the Cameraman training
pair.
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Reconstruction

patch γ iterations nfev ngev nreggev cond mean time (s) COST SSIM PSNR

102 13 15 - 13 19.65 47.70 33.681 0.853 23.860
103 10 12 - 10 18.58 41.39 33.676 0.854 23.860

2× 2 104 6 8 - 6 17.56 31.02 33.675 0.855 23.861
105 6 8 - 6 17.59 38.93 33.675 0.855 23.861

Alg. 6.2 7 9 7 - 9.14 27.55 33.676 0.855 23.859

102 5 7 - 5 31.43 25.72 33.082 0.859 23.938
103 9 12 - 9 29.20 45.47 33.115 0.859 23.934

4× 4 104 6 8 - 6 15.82 40.22 33.134 0.859 23.931
105 6 8 - 6 15.76 57.74 33.136 0.859 23.931

Alg. 6.2 6 8 6 - 9.44 24.97 33.027 0.856 23.926

102 13 15 - 13 668.87 52.93 32.437 0.865 24.023
103 14 16 - 14 2027.77 75.22 32.450 0.867 24.022

8× 8 104 13 15 - 13 2121.60 94.96 32.450 0.866 24.022
105 14 16 - 14 3297.69 157.06 32.424 0.866 24.025

Alg. 6.2 18 20 19 - 281.50 54.30 32.225 0.864 24.012

Table 5.1: Comparison between smooth and nonsmooth trust-region algorithms for
the cameraman training pair.

using both the PSNR and SSIM metrics. Figure 5.4 shows the optimal reconstructed
images and the corresponding optimal parameters. It can be observed how the algo-
rithm adjusts the regularization parameter to specific zones in the image to obtain a
better reconstruction.

When dealing with different initialization values for α, algorithm 5.1 appears to
converge to the same local minima, although with different computational efforts. Ta-
ble 5.2 shows the number of iterations along with the quality measures for the scalar
parameter problem; more iterations are required when dealing with high values for α0.

In Table 5.1 the performance of algorithm 5.1 with respect to the one-phase trust-
region algorithm, using solely the smoothed gradient (for different values of γ), is
tested. As reported in this table, even though the solution obtained solely with the
regularized gradient is not different from the non-regularized one, algorithm 5.1 requires
less running time. Furthermore, in column cond mean, the average condition number of
the BFGS approximation matrices Bk along the iterations is registered. These matrices
are used in step one of algorithm 2.3, and are an indicator of how fast the linear systems
may be solved. The average condition number computed with the non-smooth model
is consistently smaller than the one obtained using a regularized procedure. As, for
this example, the algorithm does not enter the second phase, an advantage in choosing
the non-smooth model (with the Bouligand element) may be clearly inferred.
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Reconstruction

α0 nit nfev ngev nreggev COST PSNR SSIM

1e-05 6 8 8 0 34.113114 23.804686 0.842906
0.0001 6 8 8 0 34.113114 23.804686 0.842906
0.001 6 8 8 0 34.113114 23.804686 0.842906
0.01 5 7 7 0 34.113114 23.804686 0.842906
0.1 8 10 10 0 34.113114 23.804686 0.842906
0.2 7 9 9 0 34.113114 23.804686 0.842906
0.3 8 10 10 0 34.113115 23.804686 0.842904
0.4 11 13 13 0 34.113114 23.804686 0.842906
0.5 6 8 8 0 34.113115 23.804686 0.842904

Table 5.2: Dependence of the algorithm on the initial value of the scalar parameter
for the Cameraman training pair.

Reconstruction

patch nit nfev ngev nreggev COST PSNR SSIM

1× 1 6 8 8 0 34.113114 23.804686 0.842906
2× 2 9 11 11 0 33.675627 23.860742 0.855044
4× 4 12 14 14 0 33.027442 23.945150 0.859578
8× 8 13 15 14 1 32.224837 24.051992 0.868038
16× 16 26 28 27 1 31.728896 24.119350 0.871783
32× 32 31 33 33 0 31.000720 24.220182 0.877032

Table 5.3: Nonsmooth trust-region algorithm behavior for the Cameraman training
pair.
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Figure 5.4: Learned optimal patch parameter for an increasing number of patches for
the Cameraman training pair.
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PSNR=16.3239 SSIM=0.7671 PSNR=20.2830 SSIM=0.7606

Figure 5.5: Optimal scalar reconstruction for the circles training pair. In this exper-
iment, the optimal parameter found is α∗ = 0.21629352.

Reconstruction

patch nit nfev ngev nreggev COST PSNR SSIM

1× 1 6 8 8 0 76.752394 20.282980 0.760610
2× 2 7 9 9 0 72.654528 20.521273 0.821846
4× 4 19 21 20 1 71.266465 20.605047 0.849556
8× 8 52 54 53 1 67.082882 20.867782 0.865338
16× 16 55 57 57 0 49.507960 22.187149 0.881588
32× 32 60 62 61 1 39.249873 23.195517 0.886326

Table 5.4: Trust Region Algorithm behavior on the circles training pair.

5.4.2 Circles Training Pair

For this experiment, we explore the patch parameter adaptation for a test image with
noise distributed differently along with the domain. This training pair is shown in
Figure 5.5 along with its optimal scalar parameter reconstruction. When moving to a
patch-dependent parameter learning, we can see in Figure 5.6 that the optimal patch
parameter adjusts to the original noise distribution. Furthermore, we can see that
this adaptation leads to a better reconstruction quality according to the SSIM met-
ric. Finally, regarding the behavior of the trust-region algorithm, Table 5.4 shows the
number of iterations, number of function evaluations, gradient and regularized gradient
evaluations (nfev,ngev,nregev) respectively. Again, we can see an improvement in the
reconstruction quality as more patches are considered for the parameter.

5.4.3 Multiple Training Pairs

In this experiment, we used ten image pairs containing images of faces to generate a
training dataset and ten different image pairs to generate a validation dataset; both
datasets were based on the CelebA dataset [50]. These images are of size 128 by 128
pixels, and in both datasets, we created the degenerated pairs by adding Gaussian
noise with zero-mean and standard deviation σ = 0.1. A subset of the training dataset
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PSNR=16.3239 SSIM=0.7671 PSNR=20.5213 SSIM=0.8218
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Figure 5.6: Learned optimal patch parameter for an increasing number of patches for
the circles training pair.
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PSNR=20.5848 SSIM=0.6495 PSNR=20.1740 SSIM=0.5496 PSNR=20.1359 SSIM=0.5410 PSNR=20.5296 SSIM=0.6364 PSNR=20.1997 SSIM=0.5779

PSNR=25.8618 SSIM=0.8682 PSNR=27.6006 SSIM=0.8978 PSNR=27.6197 SSIM=0.8807 PSNR=26.3016 SSIM=0.8924 PSNR=26.4552 SSIM=0.8998

PSNR=20.3755 SSIM=0.5623 PSNR=20.2060 SSIM=0.6245 PSNR=19.4840 SSIM=0.5328 PSNR=20.6107 SSIM=0.5380 PSNR=20.5312 SSIM=0.5557

PSNR=26.6957 SSIM=0.8657 PSNR=26.1793 SSIM=0.8810 PSNR=25.1071 SSIM=0.8687 PSNR=28.0581 SSIM=0.8980 PSNR=26.5776 SSIM=0.8952

Figure 5.7: Noisy images used for the faces training dataset corrupted with gaussian
noise and their corresponding optimal scalar reconstructions for α∗ = 0.07311238.

is depicted in Figure 5.7.

In Figure 5.8, we plot the cost function corresponding to a scalar parameter and
two-dimensional patch parameter along with the cost function corresponding to the
optimal value calculated by the algorithm. Again, we can confirm experimentally that
the optimal value was calculated. When incrementing the number of patches used in
the reconstruction, Figure 5.9 shows the optimal patch parameters obtained. We can
now see that the parameter value doesn’t adjust to a specific image but to the whole
training set.

For the training dataset proposed, Table 5.5 shows the mean SSIM (MSSIM) and
mean PSNR (MPSNR) reconstruction quality metrics for different patch sizes, along
with the number of iterations, cost evolution, and the number of function and gradient
evaluations used by the algorithm. As was also the case for the cameraman training
pair, an improvement in the reconstruction quality can be seen as the degrees of freedom
for the regularization parameter increase.

Finally, we can estimate the denoiser performance in images from the validation
dataset. This experiment shows a slight overfitting phenomenon that may occur when
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Figure 5.8: Values for the l2 squared cost function using a scalar regularization
parameter and a two-dimensional regularization parameter using the faces dataset.
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Figure 5.9: Values for the optimal parameters calculated for different parameter patch
sizes on the faces dataset.
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Reconstruction

patch nit nfev ngev nreggev COST MPSNR MSSIM

1× 1 9 11 11 0 18.075146 26.645679 0.884746
2× 2 10 12 12 0 18.054696 26.650206 0.884403
4× 4 27 29 28 1 18.049779 26.652420 0.884702
8× 8 17 19 19 0 17.927620 26.685560 0.886005
16× 16 13 15 14 1 17.723099 26.732897 0.886991
32× 32 19 21 20 1 17.487146 26.792166 0.888616

Table 5.5: Trust Region Algorithm behavior on the Faces dataset.

num noisy scalar 2× 2 4× 4 8× 8 16× 16 32× 32

1 0.6524 0.8748 0.8753 0.8751 0.8752 0.8751 0.8751
2 0.5840 0.7656 0.7688 0.7690 0.7695 0.7698 0.7693
3 0.5623 0.8668 0.8668 0.8663 0.8654 0.8638 0.8620
4 0.5350 0.8204 0.8206 0.8207 0.8208 0.8209 0.8204
5 0.5979 0.8737 0.8729 0.8726 0.8719 0.8708 0.8695
6 0.5807 0.8439 0.8446 0.8445 0.8447 0.8448 0.8449
7 0.5640 0.7460 0.7490 0.7495 0.7501 0.7506 0.7504
8 0.5631 0.8467 0.8471 0.8471 0.8471 0.8467 0.8461
9 0.5910 0.8354 0.8368 0.8366 0.8359 0.8348 0.8335
10 0.6622 0.8753 0.8768 0.8765 0.8761 0.8756 0.8752

MSSIM 0.5892 0.8348 0.8358 0.8358 0.8356 0.8352 0.8346

Table 5.6: Faces Dataset SSIM Quality Measures in the validation dataset.

dealing with a large number of patches, as described in Table 5.6. Indeed, it can
be seen in the validation dataset an increment on the mean SSIM (MSSIM) for the
reconstructed images from the validation dataset up to a 4× 4 patch size. Any higher
number of patches results in quality degradation. It is indeed the expected behavior
when dealing with overfitting problems.

5.4.4 Learning Optimal Total Variation Discretization

The selection of an adequate discretization for the total variation seminorm in the
context of image reconstruction problems is still an open problem [10, 16]. In [17],
the authors propose a methodology for finding optimal discretizations, where a bilevel
learning strategy is proposed instead of using hand-crafted schemes.

The bilevel framework presented in this work can also be used to learn optimal
gradient discretization by considering different schemes and their corresponding regu-
larization parameters. We will use a training dataset to estimate the optimal regular-

127



ization parameters related to the “contributions” of each discretization scheme to the
final solution.

Let us consider the following variational denoising model

min
u∈Rn
E(u) := 1

2
∥u− f∥2 +

3∑
i=1

m∑
j=1

(P(αi))j∥(Kiu)j∥, (5.74)

where K1,K2 and K3 are the forward, backward and centered finite difference schemes
of the gradient operator. The goal is to determine optimal parameters (α1, α2, α3)

⊤ ∈
R3×m

+ that lead to an optimal patchwise discretization of the total variation operator.
We can make use of a similar analysis as the one leading to the Bouligand candidate
in Theorem 5.7, by defining the following adjoint state:

⟨p, v⟩+
3∑

i=1

∑
j∈Ii

⟨µij, (Kiv)j⟩ − ⟨∇J(u), v⟩ = 0,∀v ∈ V

µij − P(αi)jTij(Kip)j = 0, ∀j ∈ I i, i = 1, 2, 3,

where V := {v ∈ Rn : (Kiv)j = 0, ∀Ai
s ∪ Bi

1, (Kiv)j ∈ span(qij), ∀j ∈ Bi
2, i = 1, 2, 3},

and the following gradient form

⟨j′(αi), hi⟩ = −
∑

j∈Ii∪Bi
2

hij
P(αi)j

⟨qij, (Kip)j⟩, for i = 1, 2, 3.

Figure 5.10 shows the 4 × 4 and 8 × 8 optimal patchwise parameters α1, α2 and
α3 obtained for the cameraman training pair and Figure 5.11 for the faces dataset.
We can observe an improvement in the reconstruction quality by using more patches
in the training dataset for both experiments. For the faces dataset, we also run a
validation experiment comparing different learned parameters of increasing size (see
Table 5.7). A higher mean SSIM value is registered when using an 8 × 8 patch size,
with the reconstruction quality slightly degrading for larger patch sizes.

5.4.5 Comparison with Derivative-Free Bilevel Parameter Learn-
ing

This section compares the method proposed in this work and the parameter bilevel
learning using inexact derivative-free optimization (DFO) as described in [27]. This
methodology removes the requirement for exactly solving the lower-level problem,
reducing its computational cost significantly. In particular, the authors consider a
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SSIM=0.8577 α1 α2 α3

SSIM=0.8671 α1 α2 α3

Figure 5.10: Values for the optimal parameter calculated for the Cameraman training
pair for different patch sizes (white - higher, black - lower). For each parameter,
the higher the parameter, the more the final solution used its corresponding type of
discretization.

SSIM=0.8701 α1 α2 α3

SSIM=0.8706 α1 α2 α3

SSIM=0.8712 α1 α2 α3

Figure 5.11: Values for the optimal parameters calculated for different parameter
patch sizes (white - higher, black - lower).
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img num noisy scalar 2× 2 4× 4 8× 8 16× 16

1 0.5247 0.7922 0.7952 0.7951 0.7977 0.7965
2 0.4588 0.6568 0.6676 0.6663 0.6649 0.6653
3 0.4267 0.7745 0.7742 0.7729 0.7748 0.7741
4 0.3836 0.7237 0.7239 0.7226 0.7244 0.7206
5 0.4580 0.7814 0.7796 0.7779 0.7806 0.7809
6 0.4263 0.7394 0.7406 0.7414 0.7432 0.7441
7 0.4547 0.6262 0.6372 0.6357 0.6338 0.6333
8 0.4117 0.7377 0.7380 0.7413 0.7429 0.7421
9 0.4655 0.7438 0.7481 0.7445 0.7432 0.7420
10 0.5081 0.8185 0.8225 0.8217 0.8219 0.8211

MSSIM 0.7395 0.7420 0.7419 0.7428 0.7424

Table 5.7: Faces Dataset SSIM Quality Measures - Optimal gradient discretization
for the validation dataset

smoothed version of the scalar ROF model for the lower-level optimization problem for
a vector of parameters θ

Φi,θ =
1

2
∥u− fi∥2 + αθ

m∑
j=1

∥(Ku)j∥νθ +
ξθ
2
∥u∥2,

where αθ is the scalar regularization parameter, (Ku)j is the finite forward difference
discretization of the spatial gradient of u at pixel j, ∥v∥νθ =

√
∥v∥2 + ν2θ is a smoothed

version of the total variation, and ξθ is the weight assigned for the strongly convex
term. Furthermore, the lower-level problem is solved numerically using the FISTA [5]
algorithm. The upper-level solver is based on an inexact trust-region algorithm [27,
Algorithm 1] that can be configured to work in two different regimes. A first regime,
called dynamic, solves the lower-level problem with “sufficient" accuracy, and the fixed
regime, where the lower-level problem is solved in a fixed number of iterations.

In this comparison experiment, we will compare algorithm 5.1 for calculating the
optimal scalar parameter for the non-smoothed version of the ROF model with a lower-
level solver PDHGM and both the dynamic version and the fixed version of the DFO
algorithm with 1000 iterations of the FISTA algorithm for the latter. In the spirit
of comparing this algorithm with the non-smooth model proposed in this work, we
fixed the smoothing parameters νθ and ξθ to the lowest possible value that allowed
computation of the lower level problem in a reasonable time. Particularly, we chose
νθ = ξθ = 1 · 10−3. Both experiments will make use of the Kodak dataset. The ground
truth contains 24 images resized to 256× 256-pixels and converted to black and white,
and the corresponding noisy pairs are synthetically generated by adding gaussian noise
with zero mead and 0.1 variance.
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l2 PSNR SSIM

img algorithm 5.1 dynamic fixed algorithm 5.1 dynamic fixed algorithm 5.1 dynamic fixed

1 108.399640 108.028863 108.025305 24.804221 24.819101 24.819244 0.799179 0.799593 0.799601
2 36.692144 36.071444 36.070946 29.508769 29.582864 29.582924 0.860296 0.860352 0.860355
3 34.094641 33.517839 33.519153 29.827638 29.901739 29.901569 0.884152 0.884052 0.884043
4 24.244099 23.698494 23.698925 31.308439 31.407292 31.407213 0.899989 0.899493 0.899489
5 113.720294 112.958227 112.954822 24.596120 24.625321 24.625452 0.847932 0.848568 0.848575
6 111.569222 110.649647 110.642370 24.679055 24.714999 24.715285 0.754031 0.755755 0.755775
7 62.766173 62.186950 62.183051 27.177243 27.217507 27.217779 0.874712 0.875072 0.875080
8 96.430437 95.444597 95.443889 25.312358 25.356986 25.357018 0.862241 0.862743 0.862744
9 35.106264 34.611217 34.613604 29.700653 29.762331 29.762031 0.901842 0.901535 0.901522
10 23.723895 23.172592 23.175260 31.402639 31.504753 31.504253 0.901620 0.901163 0.901150
11 96.549526 95.546500 95.542751 25.306998 25.352352 25.352522 0.827413 0.828732 0.828743
12 44.489950 43.593604 43.590994 28.671880 28.760272 28.760532 0.841915 0.843136 0.843153
13 125.810563 125.127508 125.120610 24.157328 24.180971 24.181211 0.752221 0.753796 0.753819
14 76.524528 75.979117 75.974868 26.316493 26.347557 26.347800 0.848706 0.849095 0.849107
15 44.312576 43.606816 43.604357 28.689229 28.758956 28.759200 0.859184 0.859698 0.859707
16 49.316021 48.645422 48.643158 28.224619 28.284080 28.284282 0.834352 0.834577 0.834589
17 42.687262 42.182209 42.178122 28.851516 28.903206 28.903627 0.867394 0.867776 0.867791
18 67.882205 67.099766 67.097877 26.836940 26.887289 26.887412 0.859794 0.860026 0.860032
19 85.897165 85.514149 85.512234 25.814711 25.834120 25.834217 0.834928 0.835329 0.835333
20 39.751725 39.050264 39.054558 29.160940 29.238260 29.237782 0.917254 0.916472 0.916447
21 73.936611 73.350698 73.350563 26.465904 26.500457 26.500465 0.869522 0.869387 0.869380
22 61.397514 60.418329 60.414806 27.272991 27.342812 27.343066 0.837474 0.838404 0.838419
23 33.024632 32.532794 32.532778 29.966120 30.031286 30.031288 0.906590 0.906264 0.906260
24 48.111877 47.678912 47.677969 28.331976 28.371236 28.371322 0.868742 0.868953 0.868957
25 75.300547 74.505264 74.497676 26.386518 26.432630 26.433072 0.817761 0.819139 0.819162
mean 64.469580 63.806849 63.804826 27.550852 27.604735 27.604823 0.853170 0.853564 0.853569

Table 5.8: Comparison between the l2, PSNR, and SSIM metric for the nonsmooth
trust region method, the derivative-free with dynamic accuracy and the derivative-free
method with a fixed number of iterations when solving the bilevel parameter learning
problem for the Kodak dataset.

Algorithm 5.1 dynamic fixed

α∗ 0.06985138 0.06946807 0.06947291
ν∗ - 0.001 0.001
ξ∗ - 0.001 0.001

Table 5.9: Optimal parameters found using the nonsmooth trust-region algorithm
and the optimal parameters calculated using dynamic and fixed versions of the DFO
algorithm.

Table 5.8 shows the quality reconstruction metrics for each image in the training
set and their respective mean. As shown in the table, all three metrics considered are
very similar, corresponding to the value of the optimal parameter obtained as detailed
in table 5.9, which are very similar as well.

Regarding the computational time, we saw a dramatic computation speedup when
solving the dynamic DFO, solving the problem in about 8 hours of computation. In
comparison, the fixed DFO algorithm and the nonsmooth trust-region algorithm pre-
sented here took a similar computation time of about 24 hours. An important obser-
vation regarding this experiment concerns the size of the parameters calculated. DFO
techniques generally cannot be extended to a large parameter size, as in a scale or patch-
dependent parameter problem. This case prevents us from comparing these algorithms
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Dataset Data Fidelity Term Regularization Term

λ∗ L2 PSNR SSIM α∗ L2 PSNR SSIM

Cameraman 64.357504 34.114243 23.804542 0.842652 0.015622 34.113114 23.804686 0.842906
Circles 4.663291 76.902703 20.274483 0.763919 0.216294 76.752394 20.282980 0.760610
Faces 14.001192 18.020032 26.657829 0.884794 0.073112 18.075146 26.645679 0.884746

Table 5.10: Optimal scalar parameters and their corresponding reconstruction quality
metrics for both the data parameter learning problem and the regularization parameter
learning problem.

in a patch-dependent parameter scenario. Furthermore, the DFO algorithm seems to
rely heavily on the smoothing parameters νθ and ξθ since, as its value decreases, the
lower-level problem becomes increasingly harder to solve. This phenomenon prevents
us from approximating the solution of a non-smooth bilevel learning problem.

5.5 Learning Data Weight vs Regularization Weight

In this section, we will compare the optimal data fidelity weight learned using the
approach described in chapter 4 and the optimal regularization weight learned using
the methodology described in chapter 5.

To start our comparison, we will first explore the scalar parameter model for learning
the data and the regularization term. Then, in table 5.10, a comparison between the
quality metrics of the reconstructed images using the optimal learned parameter for
the Cameraman, Circles, and the Faces dataset. In this table, we can see that the
obtained reconstructions have very similar quality metrics for all the datasets explored.
Moreover, when comparing the obtained values for the data fidelity parameter, their
inverses are very close to the calculated optimal regularization parameter.

Now, when moving into a patch-based parameter regime, Figures 5.12 and 5.13
show the calculated patch parameter for both the data fidelity and the regularization
learning models for the Cameraman and the Circles datasets. In addition, below each
patch, the reconstructed image’s PSNR and SSIM quality metrics are shown. Here,
even though the reconstruction quality grows higher as a large number of patches is
used, the solutions diverge. Remarkably, this phenomenon is more evident when using
a patch of size larger than 16× 16 in the Cameraman dataset and 4× 4 in the Circles
dataset.

A similar comparison is shown in Figure 5.14 for the Faces dataset. In this figure,
the quality of the optimal reconstructed dataset obtained using the learned data fidelity
term remains very close to the one obtained when learning the optimal regularization
term according to the MPSNR and MSSIM metrics.
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Figure 5.12: Reconstruction and patches comparison for data and reg.
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Figure 5.14: Reconstruction and patches comparison for data and reg.
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As a summary of all previous results, even though we can see that in the scalar
case, regardless of learning either the data fidelity term or the regularization term,
both obtain the same solution, this behavior doesn’t repeat when dealing with higher
dimensional parameters. In this regime, it can be seen that as the parameter grows
larger, the solutions obtained differ. A similar result has been seen previously for the
one-dimensional total variation denoising in [37, Figure 12], and its extension to two
dimensions is a matter for further research. Furthermore, the observed phenomenon
is particularly interesting when dealing with training sets, where the averaged recon-
struction quality metric doesn’t present such a considerable variation as in the case of
a single training pair.
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Chapter 6

Conclusions and Outlook

In this research, we investigated optimality conditions for bilevel parameter learning
problems when the lower level problem corresponds to a variational image denoising
problem. This problem is particularly challenging due to the non-differentiability in-
duced by the use of the total variation seminorm as a regularizer. Traditionally, this
problem is often approached using a tailored regularization of the non-smooth term,
from where Clarke (C-) optimality conditions can be derived.

This research aimed to characterize further stationary points for two bilevel param-
eter learning problems. The first one, presented in Chapter 4 deals with the learning of
optimal parameters affecting the data fidelity term in the variational denoising model;
followed by an analysis and experiments dealing with learning optimal parameters af-
fecting the regularization term in the variational denoising model in Chapter 5. Indeed,
by reformulating each of the problems as a Generalized Mathematical Program with
Equilibrium Constraints (GMPEC) and verifying the fulfillment of suitable constraint
qualification conditions, we managed to find Mordukhovich (M)- stationary points.
Furthermore, by investigating the differentiability properties of the solution map, we
were able to characterize Bouligand (B-) stationary points.

In this work, we provide a precise characterization of the Tangent, Fréchet, and
Mordukhovich normal cones for the subdifferential of the Euclidean norm. Moreover,
we proved and characterized the directional derivative of the solution map and its
Fréchet differentiability in the case that strict complementarity holds.

Regarding the numerical solution of the problem, we used a two-phase trust-region
algorithm tailored to deal with Lipschitz continuous functions and positiveness con-
straints. A crucial component of this algorithm is the definition of the model to be
used within the trust region; in our case, we used a characterization of the linear
elements in the Bouligand subdifferential of the solution map to define it. For the
lower level problem, we implemented a matrix-free version of the classical primal-dual
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techniques for solving the image denoising model. This implementation presented im-
provements for both the computation time and the memory usage when compared with
sparse-matrix and full-matrix implementations.

Moreover, the numeric part explored the use of different parameter structures; in
particular, scalar and patch-dependent parameters were compared. Experimentally, we
could see that using a patch-dependent structure allows us to validate the generalization
capabilities of the learned parameter when dealing with images not used for training.
Indeed, the optimal patch size can be found using traditional validation techniques.

As presented in the experimental part, the structure of the parameters is an es-
sential part of the image reconstruction process. Therefore, learning the parameter
structure along with the parameter is a promising research direction in the future. In
particular, exploring the enforcement of sparsity properties on the learned parameter
in the upper-level problem is a recommended continuation of this work. Furthermore,
the analysis presented in this work focuses on the isotropic version of the total varia-
tion seminorm. It opens the door to exploring the geometric structure of other norms
within the regularizer, with the anisotropic total variation being a natural extension.
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