Abstract: La segmentación de imágenes consiste en dividir una imagen en subconjuntos donde cada uno de ellos corresponda a un objeto que la constituye. Durante los últimos años se ha propuesto una gran variedad de modelos de segmentación vinculados a diferentes áreas de la Matemática. En nuestro caso, nos enfocamos en la formulación variacional del problema propuesta por Chan y Vese. El modelo se plantea utilizando conjuntos de nivel con el objetivo de minimizar el funcional de energía asociado al problema de segmentación. El método consiste en la evolución de una curva de nivel que, bajo ciertos criterios, se detiene en el contorno de los objetos que forman la imagen. Resolver numéricamente este problema es, en general, muy costoso. La utilización de métodos de optimización numérica permite dar una solución eficiente a este inconveniente y garantiza la convergencia de la solución hacia un mínimo. Se analizan métodos tales como: el método de descenso explícito, un método de tipo proximal y LBFGS, que combinados con el método del momento, permiten hacer uso de la información de primer y segundo orden del funcional para acelerar los métodos utilizados tradicionalmente.
LeerAbstract: We consider a bilevel optimisation approach for parameter learning in higher-order total variation image reconstruction models. Apart from the least squares cost functional, naturally used in bilevel learning, we propose and analyse an alternative cost, based on a Huber regularised TV-seminorm. Differentiability properties of the solution operator are verified and a first-order optimality system is derived. Based on the adjoint information, a quasi-Newton algorithm is proposed for the numerical solution of the bilevel problems. Numerical experiments are carried out to show the suitability of our approach and the improved performance of the new cost functional. Thanks to the bilevel optimisation framework, also a detailed comparison between TGV2 and ICTV is carried out, showing the advantages and shortcomings of both regularisers, depending on the structure of the processed images and their noise level.
LeerAbstract: Entre los problemas más interesantes a tratar dentro del procesamiento de imágenes se encuentra el problema de inpainting, que consiste en reconstruir o restaurar partes deterioradas o perdidas de la imagen observada, a partir de la información disponible alrededor del área a ser recuperada, además de remover objetos que no sean de interés pues ocultan información. En la última década, varios modelos de inpainting basados en distintos conceptos matemáticos han sido planteados para resolver este problema. En este trabajo, nos enfocaremos en la formulación variacional de Chan y Shen [9] basado en la regularización de variación total y el modelo basado en la ecuación del movimiento de la curvatura media [3]. No sólo el planteamiento y la ejecución de la restauración de imágenes son un proceso complejo, sino también su implementación computacional, por la gran cantidad de datos que se deben procesar. Es así que, en este trabajo se proponen algoritmos numéricos de segundo orden basados en el método Newton semi-suave, pues existen términos no definidos que regularizados presentan términos no diferenciables.
LeerAbstract: We study the qualitative properties of optimal regularisation parameters in variational models for image restoration. The parameters are solutions of bilevel optimisation problems with the image restoration problem as constraint. A general type of regulariser is considered, which encompasses total variation (TV), total generalized variation (TGV) and infimal-convolution total variation (ICTV). We prove that under certain conditions on the given data optimal parameters derived by bilevel optimisation problems exist. A crucial point in the existence proof turns out to be the boundedness of the optimal parameters away from 0 which we prove in this paper. The analysis is done on the original – in image restoration typically non-smooth variational problem – as well as on a smoothed approximation set in Hilbert space which is the one considered in numerical computations. For the smoothed bilevel problem we also prove that it $\Gamma$ converges to the original problem as the smoothing vanishes. All analysis is done in function spaces rather than on the discretised learning problem.
LeerAbstract: We review some recent learning approaches in variational imaging, based on bilevel optimisation, and emphasize the importance of their treatment in function space. The paper covers both analytical and numerical techniques. Analytically, we include results on the existence and structure of minimisers, as well as optimality conditions for their characterisation. Based on this information, Newton type methods are studied for the solution of the problems at hand, combining them with sampling techniques in case of large databases. The computational verification of the developed techniques is extensively documented, covering instances with different type of regularisers, several noise models, spatially dependent weights and large image databases.
Leer