EN | ES
El Seminario de Investigación es un espacio semanal que se enfoca en diversas áreas de la matemática aplicada, con especial énfasis en la Optimización Matemática y en la Modelización. El objetivo principal es compartir los resultados de investigación del Modemat y poner en contacto a los investigadores del Centro con académicos de todo el mundo, de forma presencial o a través de plataformas virtuales. Para suscribirse a la lista de correos del Seminario o proponer una charla en el mismo, por favor escribir a: sergio.gonzalez@epn.edu.ec

Convex relaxations of parabolic optimal control problems with combinatorial switching constraints

Convex relaxations of parabolic optimal control problems with combinatorial switching constraints

By Prof. Dr. Christian Meyer. Universidad Técnica de Dortmund

Fecha seminario: 2022-02-03

We consider optimal control problems for partial differential equations where the controls take binary values but vary over the time horizon, they can thus be seen as dynamic switches. The switching patterns may be subject to combinatorial constraints such as, e.g. an upper bound on the total number of switchings or a lower bound on the time between two switchings. While such combinatorial constraints are often seen as an additional complication that is treated in a heuristic postprocessing, the core of our approach is to investigate the convex hull of all feasible switching patterns in order to define a tight convex relaxation of the control problem. The convex relaxation is built by cutting planes derived from finite-dimensional projections, which can be studied by means of polyhedral combinatorics, and solved by an outer approximation algorithm. However, both the relaxation and the algorithm are independent of any fixed discretization and can thus be formulated in function space. Preliminary numerical results illustrate the efficiency of our approach.

Ver video: