EN | ES
El Seminario de Investigación es un espacio semanal que se enfoca en diversas áreas de la matemática aplicada, con especial énfasis en la Optimización Matemática y en la Modelización. El objetivo principal es compartir los resultados de investigación del Modemat y poner en contacto a los investigadores del Centro con académicos de todo el mundo, de forma presencial o a través de plataformas virtuales. Para suscribirse a la lista de correos del Seminario o proponer una charla en el mismo, por favor escribir a: sergio.gonzalez@epn.edu.ec

Augmented Lagrangian Type Preconditioners for Steady Incompressible Flow

Augmented Lagrangian Type Preconditioners for Steady Incompressible Flow

By Dr. Florian Wechsung. Universidad de Nueva York

Fecha seminario: 2022-02-24

We consider finite element approximations of the stationary incompressible Navier-Stokes equations. An ideal preconditioner for the linear systems arising from these equations yields convergence that is algorithmically optimal and parameter robust, i.e. the number of Krylov iterations required to solve the linear system to a given accuracy does not grow substantially as the mesh or problem parameters are changed. It has proven challenging to develop solvers that exhibit both properties; matrix factorisations are robust to Reynolds number but scale badly with dof count, whereas Schur complement based algorithms such as PCD and LSC scale linearly in the dof count but their performance decreases as the Reynolds number is increased. In this talk we present augmented Lagrangian based preconditioners with linear complexity and iteration counts that only grow mildly with respect to the Reynolds number. The key ingredient for this preconditioner is a tailored multigrid scheme consisting of custom smoothing and prolongation operators.

Ver video: